ANNUAL REPORT

2019-2020

ALL INDIA COORDINATED RESEARCH PROJECT (ICAR) ON POST HARVEST ENGINEERING AND TECHNOLOGY JUNAGADH CENTRE

> For presentation at the 36th Annual Workshop to be held at Online Mode

February 3 - 5, 2021

AICRP on Post Harvest Engineering and Technology Department of Processing & Food Engineering College of Agricultural Engineering & Technology Junagadh Agricultural University JUNAGADH – 362001

OFFICIAL USE ONLY

ANNUAL REPORT 2019- 2020

ALL INDIA COORDINATED RESEARCH PROJECT (ICAR)

ON

POST HARVEST ENGINEERING AND TECHNOLOGY JUNAGADH CENTRE

Presented online

February 03 -05, 2021

AICRP on Post Harvest Engineering and Technology Department of Processing and Food Engineering College of Agricultural Engineering & Technology Junagadh Agricultural University JUNAGADH – 362001

FOREWORD

Storage and processing of agricultural products is the need to increase the farmers' income. Post-harvest engineering and technology is the important tool for this purpose. The concept of processing agricultural products and foods after harvesting, like processing of grains, fruits, vegetables, animal products, milk and other foods for preservation, value addition, making different products by using operations like cooling, peeling, grading, storage, pasteurization, sterilization, refrigeration, heat and mass transfer operations. The center renders services to society for preventing post-harvest losses, improve nutrition and add value to the products. Storage and processing of agricultural products at rural level generate employment in rural area, diminish poverty and motivate development of other related financial segments.

The Junagadh center contributed industriously by establishing agro processing centers, utilization of solar energy for drying of groundnut pod, storage of groundnut pods, reducing time of curing of onion to facilitate the land for new crops, development of machines for fruits cleaning and grading, spice processing, value addition to groundnut etc. In view of the shortage of capital, an arrangement of custom hiring service facility was provided to the farmers in meeting the requirements for onion storage. The center has brought fruitful findings on the storage of oil seeds, and cereals spice crops. These findings of research work became useful to farmers, industries and entrepreneurs.

As per the need of this region, the Junagadh center is working constantly on advance technologies related to feed block making machine, solar dryer cum green house, peanut butter, coriander dhal milling process, vacuum packaging of mangoes, storage technique for coriander and wheat (seed), onion storage structures, sapota cleaner, pectin extraction, enzyme extraction, spice processing etc. for the benefit of farmers and processing industries. However, in view of the recent trends, still much remains to be done for value addition to groundnut, spices and onion. This centre has space for laboratory work, office room, analytical facilities, etc., but due do continuous expansion and with a view to impart training and accommodate precious and sensitive instruments / equipments purchased so far, this centre need a separate building / space for better sitting and laboratory arrangements, for which necessary efforts are being made to fulfill the same at university level.

The financial assistance delivered by the ICAR under the AICRP on Post Harvest Engineering and Technology is thankfully acknowledged. I am sure the Junagadh centre will give considerably towards need of the agro industries and the life flourishing of the farmers of the region.

25 January, 2021 Junagadh

(N. K. Gontia) Principal & Dean College of Agril.Engg.& Technology JAU, Junagadh

i

ACKNOWLEDGEMENT

All India ICAR Co-ordinated Research Project on Post-harvest Engineering and Technology has been functioning at Junagadh Agricultural University, Ludhiana since 1980. This report is the outcome of sincere efforts and hard work of all research scientists. Post-harvest Technology has now been recognized as sun rising sector answerable for employment generation in rural area especially in the post green revolution era.

The All India Coordinated Research Project on Post-Harvest Engineering and Technology staff wish to converse their earnest recognitions to Dr. V. P. Chovatiya, I/c Vice Chancellor and Director of Research, Junagadh Agricultural University, Junagadh; for their appreciated direction, assumed inspiring remarks and profound consideration shown in the activities of the scheme. We hereby definite our sincere thanks to and Dr. N. K. Gontia, Principal & Dean, College of Agricultural Engineering & Technology, Junagadh for able nursing of the scheme work.

The staff members of the scheme pleasantly distinguish the financial assistance received by ICAR to run the scheme definitely. The positive approach and valued comment of Dr. K. Alagusundaram, Deputy Director General (Engineering) and Dr. S. N. Jha, Assistant Director General (PE) ICAR, New Delhi are gratefully acknowledged. We express our most sincere greetings to Dr. S. K. Tyagi, Project Coordinator, AICRP on Post Harvest Engineering and Technology, Central Institute of Post-Harvest Engineering & Technology, Ludhiana for their motivating direction, synchronization as well as their keen interest in the activities of the scheme.

We are also greatful to all the staff members of the Department of Processing and Food Engineering for their support and taking due interest in the activities of the scheme work.

January 25, 2021 Junagadh

(M. N. Dabhi)

Research Engineer for Scheme Staff

CONTENTS	С	0	Ν	Т	E	Ν	Т	S	
-----------------	---	---	---	---	---	---	---	---	--

Particulars	Page No.
Foreword	i
Acknowledgement	ii
Contents	iii
List of Tables	iv
List of Figures	v
List of Plates	vi
General Information	vii
Investigation No. 1 (Code No:PH/JU/85/1)	1
Establishment of Agro Processing Centre training and demonstration of technologies (Operational research project on Agro Processing Centres)	
RPP-III. Completed Technical Programme	
Investigation No. 2(Code No:PH/JU/2019/01)	3
Low temperature grinding of spices.	
RPP-II. Ongoing Technical Programme	
Investigation No. 3 (Code No.: PH/JU/2018/02)	63
Design and development of grain treater for enzymatic pre-treatment to pigeon pea grains.	
Investigation No. 4 (Code No. : PH/JU/2020/01)	78
Standardization of process technology for preparation of peanut	
sauce and peanut wadi (Chunks).	
Investigation No. 5 (Code No. :PH/JU/2020/02)	84
Application of microwave technology for disinfestations of groundnut	
kernels.	
RPP-I. New Technical Programme	
Investigation 1	94
Development of biodegradable cutlery from agro industrial waste.	
Tentative technical programme for the year 2020-21	108
Publications, trainings and demonstrations	109

Table No.	Description	Page No.
1.1	Operational performance and income from the processed products	2
2.1	Physical properties of fenugreek seeds	6
2.2	Effect of grinding method and feed temperature on parameters evaluating performance of low temperature grinding mill	8
2.3	Initial and final value of temperature inside the grinding chamber for all the treatments	10
2.4	Initial and final value of temperature of circulating liquid for all the treatments	11
2.5	Effect of grinding method and feed temperature on biochemical parameters of ground fenugreek seed powder	17
2.6	Compounds found in extract of seed powder of treatment L_0T_0 (Ambient grinding + Ambient temperature feed)	30
2.7	Compounds found in extract of seed powder of treatment L_3T_1 (Coolant circulation + Low temperature feed)	32
2.8	Effect of grinding method and feed temperature on other particle size of ground fenugreek seed powder	34
2.9	Moisture content of cleaned turmeric rhizomes	36
2.10	Physical properties of turmeric	36
2.11	Mean values of parameters evaluating performance of low temperature grinding mill	37
2.12	Effect of grinding method and feed temperature on parameters evaluating performance of low temperature grinding mill	39
2.13	Initial and final value of temperature inside the grinding chamber for all the treatments	42
2.14	Mean value of biochemical parameters of turmeric powder obtained through various treatments.	47
2.15	Effect of grinding method and feed temperature on biochemical parameters of ground turmeric powder	48
5.1	Pest population buildup of Red rust flour beetle during storage of groundnut kernels.	86
5.2	Percent kernels damage on number base due to red rust flour beetle during storage.	87
5.3	Percent kernels damage on weight base due to red rust flour beetle during storage.	88
5.4	Percent moisture content of groundnut kernels during storage	89
5.5	Percent Germination of groundnut kernels during storage	90

LIST OF TABLES

LIST OF FIGURES

Fig. No.	Description	Page No.
2.1	Temperature profile of grinding chamber for all the treatments	10
2.2	Effect of various treatments on temperature inside the grinding chamber at the end of grinding	12
2.3	Effect of various treatments on time to grind the material	13
2.4	Effect of various treatments on temperature of fenugreek seed powder	14
2.5	Effect of various treatments on milling loss of fenugreek seed powder	15
2.6	Effect of various treatments on machine loss of fenugreek seed powder	16
2.7	Effect of various treatments on moisture content of fenugreek seed powder	20
2.8	Effect of various treatments on total carbohydrate content of ground powder	21
2.9	Effect of various treatments on crude fibre content of fenugreek seed powder	22
2.10	Effect of various treatments on mucilage content of fenugreek seed powder	23
2.11	Effect of various treatments on true protein content of fenugreek seed powder	24
2.12	Effect of various treatments on total oil content of fenugreek seed powder	25
2.13	Effect of various treatments on total ash content of fenugreek seed powder	26
2.14	Effect of various treatments on total phenol content of fenugreek seed powder	27
2.15	Effect of various treatments on total flavonoid content of fenugreek seed powder	28
2.16	Effect of various treatments on antioxidant activity of fenugreek seed powder	29
2.17	Effect of various treatments on volatile oil content of fenugreek seed powder	30
2.18	GC-MS chromatogram of fenugreek seed powder extract of ambient grinding with ambient temperature feed treatment (L_0T_0)	32
2.19	GC-MS chromatogram of fenugreek seed powder extract of in coolant circulation with low temperature feed treatment L_3T_1	34
2.20	Effect of various treatments on particle size of fenugreek seed powder	35
2.21	Temperature profile of grinding chamber for all the treatments	41
2.22	Effect of various treatments on temperature inside the grinding	43
2.23	chamber at the end of grinding Effect of various treatments on time to grind the material	44
2.23	Effect of various treatments on temperature of turmeric powder	44
2.24	Effect of various treatments on milling loss of turmeric powder	46
2.25	Effect of various treatments on machine loss of turmeric powder	47
2.20	Effect of various treatments on moisture content of turmeric powder	49

2.28	Effect of various treatments on total carbohydrate content of turmeric	50
	powder	
2.29	Effect of various treatments on crude fibre content of turmeric	51
	powder	
2.30	Effect of various treatments on true protein content of turmeric	52
	powder	
2.31	Effect of various treatments on total oil content of turmeric powder	53
2.32	Effect of various treatments on total ash content of turmeric powder	54
2.33	Effect of various treatments on volatile oil content of turmeric	55
	powder	
3.1	Conceptual design of small-scale peanut roaster	68
3.2	Computerized conceptual layouts of the machines	69

LIST OF PLATES

Plate	Descrption	Page
No.		No.
3.1	Fabrication of Drum for grain treater	70
3.2	Fabrication of side gates for grain treater	70
3.3	Fabrication of gate for loading and unloading	71
3.4	Fabrication of stand for grain treater	71
3.5	Fitting of rollers to support the drum	72
3.6	Fitting of flights inside the drum	72
3.7	Fitting of centre shaft assembly of the drum	72
3.8	Fitting of spray nozzles inside the drum	73
3.9	Fitting of heater assembly inside the drum	73
3.10	Fitting of electric motor and driving mechanism to rotate the drum	73
3.11	Control panel	74
3.12	Fitting of enzyme solution tank and spray pump	74
3.13	Complete setup of grain treater	75

ALL INDIA CO-ORDINATED RESEARCH PROJECT (ICAR)

ON

POST HARVEST ENGINEERING AND TECHNOLOGY SCHEME JUNAGADH AGRICULTURAL UNIVERSITY

JUNAGADH CENTRE

GENERAL INFORMATION

1.	Title of the	:	All India Co-ordinated Research Project (ICAR) on Post
	scheme		Harvest Engineering and Technology
2.	ICAR sanction	:	1(41)/PHT/2006/XI Plan/1010998, dtd. 21.3.2009
	No. & Date		(PC letter No.)
3.	Date of	:	April, 1980
	commencement		
4.	Date of	:	The scheme is sanctioned for the 12 th Five Year Plan
	completion		
5.	Sanctioned	:	Rs. 18087571/- (ICAR+State)
	grant for the		
	Year 2019-2020		
	for which this		
	report is		
	presented		

6. Staff position in the scheme

Sr.	Designation	N	0.	of	Name of the	Present	Date of
No.		po	posts		incumbent	Scale of pay	joining /
		S	F	V			vacant
	Dessenth Engineen						
1.	Research Engineer	1	1	-	Dr. M. N. Dabhi	131400-	01.09.2016
						217100	
2.	Asstt. Bio-Chemist	1	1	-	Dr. P. J. Rathod	57700-	01.12.2018
						182400	
3.	Asstt. Entomologist	1	1	-	Prof. R.D.Dhudashia	131400-	01.06.1997
						217100	
4.	Asstt. Food	1	1	-	Prof. A.M. Joshi	68900-	18.02.2009
	Microbiologist					205500	
5.	Asstt. Res.	1	1	1	Prof. P. R.Davara	68900-	01.01.2011
	Engineer (ASPE)					205500	
6.	Asstt. Process Engr.	1	-	1	Vacant	57700-	23.07.2020
	(Testing & Eva.)					182400	
7.	Senior Tech. Asstt.	1	1	-	Er. H. R. Sojaliya	39900-	14.02.2012
						126600	
8.	Investigator	1	1	-	Shri P. R. Mathukiya	38090 (fixed)	01.11.2019
9.	Draftman (Mech.)	1	1	-	Shri R. V. Bokhiriya	31340 (fixed)	01.01.2021
10.	Craftman-I	1	1	-	Shri V. S. Kava	25500-81100	01.11.2014
	(Welder)						
11.	Craftman-II (Fitter)	1	1	-	Shri N.V. Vora	19900-63200	28.12.2008
12.	Craftman-III	1	-	1	Vacant	19900-63200	1.07.2016
	(Tinsmith)						
13.	Senior Mechanic	1	1	-	Shri A. P. Zezariya	29200-92300	26.07.2018

7. Expenditure Statement for the year 2019-2020 (Upto March, 2020) Head-wise breakup of Receipts, Expenditure and Closing Balances for the financial year 2019-20 Period : 01-04-2019 to 31-03-2020 (ICAR share-75%)

Sr. No.	Budget Head	Opening balance as on 01-04-2019 Rs.	Grant received during the year 2019-20 Rs.	Receipts during the year 2019-20 Rs.	Revalidated amount of Unspent Balances of 2018-19, Rs.	Total grant Rs. (4+5+6)	Expenditure incurred for the councils share during the year 2019-20 Rs.	**Surrender of grant, Rs.	Closing balance at the end of the year 2019-20 as on 31-03-2020 Rs. (7-8-9)
1	2	3	4	5	6	7	8	9	10
1	Pay and Allowances	4,016,555.00	9,500,000.00		4,016,555.00	13,516,555.00	9,274,940.00	-	4,241,615.00
2	Travelling Allowance	297,197.00	50,000.00		297,197.00	347,197.00	55,619.00	-	291,578.00
3	Recurring Contingencies (Including HRD)	573,006.00	850,000.00		573,006.00	1,423,006.00	1,409,965.00	-	13,041.00
4	Non recurring contingencies	370,677.00	775,000.00		370,677.00	1,145,677.00	795,896.00	300,000.00	49,781.00
	Total, Rs.	5,257,435.00	11,175,000.00		5,257,435.00	16,432,435.00	11,536,420.00	300,000.00	4,596,015.00
5	Receipts during the year 2018-19	64,464.00				64,464.00		-	64,464.00
6	Receipts during the year 2019-20			4,000.00		4,000.00		-	4,000.00
	Total, Rs.	5,321,899.00	11,175,000.00	4,000.00	5,257,435.00	16,500,899.00	11,536,420.00	300,000.00	4,664,479.00

** Non-recurring grant of Rs. 300000/- was surrendered to ICAR in the month of March-2020.

8. Technical Programme

Sr.No.	Code No.	Title
1	PH/JU/85/1	Establishment of Agro Processing Centre training and demonstration of technologies (Operational research project on Agro Processing Centres)
2	PH/JU/2018/02	Design and development of grain treater for enzymatic pre-treatment to pigeon pea grains.
3	PH/JU/2019/01	Low temperature grinding of spices.
4	PH/JU/2020/01	Standardization of process technology for preparation of peanut sauce and peanut wadi (Chunks).
5	PH/JU/2020/02	Application of microwave technology for disinfestations of groundnut kernels.
6		Development of biodegradable cutlery from agro industrial waste.

Investigation No. : 1

- 1.1 Scheme code No. : PH/JU/85/1
- **1.2 Title of Investigation**: Establishment of Agro Processing Centre training and demonstration of technologies (Operational research project on Agro Processing Centres)

1.3 Name of Investigators:

- 1. Dr. M. N. Dabhi 2. Prof. P. R. Davara 3. Prof. D. M. Vyas
- 4. Er. P. P. Vora

1.4 Objectives

- 1. Survey of selected villages to identify the available agro-processing equipment.
- 2. To transfer the developed and improved agro-processing equipment to the selected village to give value added product.
- 3. To evaluate the techno-economic feasibility of the agro-processing centre.

1.5 Justification

Migration from the village to the cities not only disturbs the rural based economy but also causes a saturated and explosive urban population growth. The dire need of the hour is to prevent this migratory trend from villages to cities, so as to increase the activities concerned with farming thereby increase food production. This could be prevented by stabilizing industries in the proximity of the source of raw materials or near the vicinity of consumption catchment's area to avoid higher transportation cost. This will help the village to become self-sufficient in production, processing and consumption of raw materials produce by them. More job opportunities would also be created, resulting in more income generation.

- **1.6 Date of start:** April 2012
- **1.7 Date of completion:** Continue

1.8 Past Work done

Major equipment installed at agro processing centres were used for their operational work. In this period, oil milling, spice milling, groundnut decorticating, groundnut threshing, cleaning and grading of wheat were taken up. The detailed operational performance data and expenditure incurred, income obtained along with profit / loss were determined.

1.9 Progress of work

Agro processing centers were visited for monitoring the progress made by the centers. Loej, Virol, Tadka pipaliya and Chotila centre has also deposited installment for the year 2018-19. The detailed operational performance data and expenditure incurred, income obtained along with profit / loss were determined and presented in Table: 1.1.

S. N.	Activities	Raw material processed (kg)	Finished material produced (kg)	Expenditure incurred (Rs.)	Income (Rs.)	Net income (Rs.)
			Pipaliya Agro P	rocessing Cent	re	
1	Oil milling	40000 kg	-	80000	160000	80000
	(groundnut)			(@ 2 Rs./kg.)	(@ 4Rs./kg.)	
2	Cleaning and	4200 kg	-	-	4200	4200
	grading of wheat,				(@ 1 Rs/kg.)	
3	Groundnut	-	_	_	320	320
	decortication				(@ 20Rs/day	
	(manually)				x 2 nos.)	
4	Sesame	280 kg	-	8400	16800	8400
	processing					
5	Groundnut	-	-	-	11400	11400
	threshing				(@300Rs./hr;	
					Total 38 hrs.)	
	Pulse mill	420 kg	-	840	4200	3360
7	Spice milling	320 kg	-	640	3200	2560
		L	oej Agro Process	ing Centre		
1	Oil milling	82000 kg	-	164000	328000	164000
	(groundnut)			(@ 2 Rs./kg.)	(@ 4Rs./kg.)	
2	Cleaning and	4700 kg	-	-	4700	4700
	grading of wheat,				(@ 1Rs./kg.)	
		Vi	irol Agro Process	sing Centre		
1	Oil milling	92000 kg	-	184000	368000	184000
	(groundnut)			(@ 2 Rs./kg.)	(@ 4 Rs./kg.)	
2	Cleaning and	4500kg	-	-	4500	4500
	grading of wheat,				(@ 1 Rs./kg.)	
3	Spice milling	600 kg	-	1664	8320	6656
		Chilly				
		108 kg				
		turmeric				
		124 kg				
		cumin				
		Total 832				
			nchal Vikas Man	-	· · · · · · · · · · · · · · · · · · ·	
1.	Oil milling	7200 kg	-	14400	28800	14400
				(@ 2 Rs./kg.)	(@ 4Rs./kg.)	

Table 1.1 : Operational performance and income from the processed products

1.10 Conclusion:

Agro Processing Centres are running very well for utilization of processing machinery and processing of farmers produce at village level.

1.11 Future plan of work

The experiment will be continued.

INVESTIGATION – 2

Title : Low temperature grinding of spices.

ANNEXURE -VI INDIAN COUNCIL OF AGRICULTURAL RESEARCH CHECKLIST FOR SUBMISSION OF FINAL RESEARCH PROJECT REPORT (RPP-III) (For Guidelines Refer ANNEXURE – XI (F))

- 1. Institute Project Code: PH/JU/2019/01
- 2. Investigators as approved in RPP-I, If any change attach IRC proceedings: Yes

Principal Investigator	CC-PI	Co-PI
Dr. M.N Dabhi	Dr. P. R. Davara	Dr. H. P. Gajera

3. Any change in objectives and activities (If yes, attach IRC proceedings)

Yes/No

4.	Date of Start & Date of Completion (Actual). If any extension granted enclose IRC proceedings	Yes	No
5.	Whether all objectives met	Yes	No
6.	All activities completed	Yes	No
7.	Salient achievements/major recommendations included	Yes	No
8.	Annual Progress Reports (RPP- II) submitted	Yes	No
9.	Reprint of each of publication attached	Yes	No
10.	Action for further pursuit of obtained results indicated	Yes	No
11.	ReportpresentedinDivisionalseminar(encloseproceedings& actiontakenreport)(AGRESCO meeting)	Yes	No
12.	ReportpresentedinInstituteseminar(encloseproceedings& actiontakenreport)(Annual Workshop)	Yes	No
13.	IRC number in which the project was adopted	IRC No:	
14.	Any other Information	N.A	

15. Signature:

(M. N. Dabhi)	(P. R. Davara)	(H. P. Gajera)
Project Leader	Co-PI	Co-PI HOD

ANNEXURE - VII INDIAN COUNCIL OF AGRICULTURAL RESEARCH <u>FINAL RESEARCH PROJECT REPORT (RPP- III)</u> (For Guidelines Refer ANNEXURE – XI(G)) PROJECT REPORT (RPP- III)

- 1. Institute Project Code : PH/JU/2019/01
- 2. Project Title: Low temperature grinding of spices.
- 3. Key Words: Grinding, spices, low temperature
- 4. (a) Name of the Lead Institute : AICRP on PHET, Junagadh
 (b) Name of Division/ Regional Center/ Section: -
- 5. (a) Name of the Collaborating Institute(s): (b) Name of Division/ Regional Center/ Section of Collaborating Institute(s): -
- **6.** Project Team(Name(s) and designation of PI, CC-PI and all project Co-PIs, with time spent)

S.	Name, designation	Status in	Time	Work components
No.	and institute	the project	spent	assigned to individual
		(PI/CC- PI/ Co-PI)	(%)	scientist
1	Dr. M. N. Dabhi	PI PI	60%	Planning, data collection,
	Research Engineer, AICRP on PHET,			statistical analysis and final report Writing
	Dept. of Processing			initia report writing
	and Food Engg.,			
	College of Agril.			
	Engg. & Tech.,			
	Junagadh Agril. University, Junagadh			
2	Dr. P. R. Davara,	Co-PI	20%	Helping in analysis and
	Assistant Research			data collection
	Engineeri,			
	AICRP on PHET,			
	Dept. of Processing			
	and Food Engg.,			
	College of Agril.			
	Engg. & Tech.,			
	Junagadh Agril. University, Junagadh			
3	Dr. H. P. Gajera	Co-PI	20%	1. Assessment of
	Associate Research			biochemical and volatile
	Scientist			compound in spiced
	Department of			powder.
	Biotechnology			2. Data collection and
	College of			report writing of
	Agriculture,			biochemical and volatile
	Junagadh Agril.			compound available in
	University, Junagadh			spice powder through
				laboratory analysis.

7. Priority Area : Post Harvest Technology

- 8. Project Duration: Date of Start : 01-03-2019 Date of Completion : 31-03-2021
- 9. a. Objectives
 - 1. Development of low temperature grinding machine
 - 2. Grinding of spices (Fenugreek seed, Turmeric) at low temperature
 - 3. Assessment of biochemical and volatile compound of spice powder.
 - a. Practical utility
- **10.** Final Report on the Project (materials and methods used, results and discussion, objective wise achievements and conclusions)

10.1 Experimental details

Experimental design : FCRD

Independent parameters

First Factor	Different Grinding Methods
	A ₁ - Ambient grinding
	A ₂ - By circulating ambient temperature water
	A ₃ - By circulating chilled water
	A ₄ - By circulating coolant
Second Factor	Different Feed Temperatures
	B ₁ - Ambient temperature feed

 B_2 - Low temperature feed (-10 ± 2°C)

Dependent parameters

Physical Parameters : Size, Sphericity, Bulk density, True density, Porosity, Angle of repose, Coefficient of friction

Mechanical Parameters: Hardness

Biochemical Parameters: Proximate composition (Moisture, Total carbohydrate, Total protein, Crude fat, Total ash) and Other biochemical constituents (Total oil content, Oleoresin, Total phenol concentration, Total flavonoid concentration, Antioxidant activity, Volatile oil, Volatile oil compounds)

10.2Results and Discussions :

10.2.1 Fenugreek seeds.

The results of the experiments carried out to meet the objectives of the present research problem. The study was initiated with the estimation of moisture content of raw fenugreek seeds after cleaning thoroughly. It was followed by measurement of physical properties and hardness of seeds. After modifying an ambient grinding mill into low temperature grinding mill, it was tested for different flow rates at no load condition in order to get an optimum value at which liquid departed with maximum heat absorbed. At that fixed value of flow rate, performance of low temperature grinding mill was evaluated by grinding in eight different treatments. Further, quality of ground fenugreek seed powder obtained through each treatment was assessed by estimating various biochemical parameters. The results obtained in each experiment of this study are presented and discussed in due sequence.

10.2.1.1Moisture content

The values of moisture content of raw fenugreek seeds, estimated with the help of Dean and Stark apparatus. The mean (n=5) moisture content of seeds was found to be $8.129 \pm 0.168\%$ (w.b.).

10.2.1.2Physical properties

The mean values obtained for various physical properties of raw fenugreek seeds at moisture content of 8.13% (w.b.) are given in following Table 2.1 and are discussed separately below.

Sr. No.	Physical property	Mean ± S. D.
1	Size (Geometric mean diameter) (mm)	2.851 ± 0.169
2	Sphericity	0.741 ± 0.079
3	Bulk density (g/cm ³)	0.766 ± 0.005
4	True density (g/cm ³)	1.291 ± 0.084
5	Porosity (%)	40.682
6	Static angle of repose (°)	27.950 ± 0.959
	Coefficient of external friction (static)	
7	1) Metal (Galvanized iron) surface	0.287 ± 0.013
/	2) Plywood surface	0.308 ± 0.014
	3) Glass surface	0.335 ± 0.019

Table 2.1 Physical properties of fenugreek seeds

Size (Geometric mean diameter)

The mean value for size of fenugreek seeds was determined based on values of length, breadth and thickness of 50 randomly selected seeds. The mean value of size in terms of geometric mean diameter was found to be 2.851 ± 0.169 mm.

Sphericity

The mean value of sphericity of 50 randomly selected seeds was found to be 0.741 ± 0.079 .

Bulk density

The mean value of five replication of bulk density of selected seeds was found to be 0.766 ± 0.005 g/cm³.

True density

The mean value of five replication of true density of randomly selected seeds was found to be 1.291 ± 0.084 g/cm³.

Porosity

The mean value of five replications of porosity for fenugreek seeds was calculated based on mean values of bulk and true density. It was found to be 40.682%.

Static angle of repose

The mean value of five replications of angle of repose was found to be 27.950 $\pm \, 0.959^{\circ}.$

Coefficient of external friction (static)

The mean values five replications were found to be 0.287 ± 0.013 , 0.335 ± 0.019 and 0.308 ± 0.014 for metal (galvanized iron), glass and plywood surface, respectively.

Hardness of fenugreek seeds

The mean value fifteen replications for hardness of fenugreek seeds was determined based on 15 randomly selected seeds. The mean value obtained was 50.756 \pm 7.612 kg force.

10.2.1.3 Performance evaluation of low temperature grinding mill

Performance evaluation of low temperature grinding mill was carried out by observing time to grind the material, temperature profile of liquid entering and leaving the grinding chamber along with temperature profile inside the grinding chamber, temperature inside the grinding chamber at the end of grinding operation, temperature of ground product, sieve clogging, milling and machine loss for each treatment combination. In addition to that, temperature of surrounding was noted every time before starting off grinding operation. Results of this section are discussed separately for each parameter in detail below.

Ambient temperature before grinding

Ambient temperature is an important independent parameter which can affect the conditions and results of grinding operation. Ambient temperature, observed with the help of a glass thermometer before each treatment including three replications. Results showed that the mean value among all the treatments varied from minimum of 33.37°C to maximum of 35.10 °C.

evaluating performance of low temperature grinning min										
Effect	Temperature inside grinding chamber at the end (°C)	Time to grind the material (min)	Temperature of ground product (°C)	Milling loss (%)	Machine loss (%)					
Grinding method (L)										
Ambient grinding (L ₀)	89.67 ^a	20.81 ^a	67.65ª	28.14	14.59					
Ambient temperature water circulation (L_1)	84.17 ^b	20.55ª	63.58 ^b	28.22	14.64					
Chilled water circulation (L ₂)	61.00 ^c	19.87 ^b	56.62 ^c	28.46	14.84					
Coolant circulation (L ₃)	54.17 ^d	19.60 ^b	51.65 ^d	28.54	15.08					
S. Em±	0.6124	0.1793	0.2781	0.1439	0.1483					
C. D. at 5%	1.8360	0.5375	0.8339	NS	NS					
	Feed	temperatu	re (T)							
Ambient temperature feed (T_0)	73.08ª	20.42ª	60.32 ^a	27.61ª	14.27ª					
Low temp. feed (T ₁)	71.42 ^b	19.99 ^b	59.43 ^b	29.07 ^b	15.30 ^b					
S. Em±	0.4330	0.1268	0.1967	0.1017	0.1049					
C. D. at 5%	1.2982	0.3800	0.5897	0.3050	0.3145					
	Int	eraction (L	∠*T)							
S. Em±	0.8660	0.2535	0.3933	0.2035	0.2098					
C. D. at 5%	NS	NS	NS	NS	NS					
C. V%	2.0761	2.1730	1.1379	1.2435	2.4573					

 Table 2.2 Effect of grinding method and feed temperature on parameters evaluating performance of low temperature grinding mill

Temperature profile inside the grinding chamber

The values of temperature of liquid entering and leaving the grinding chamber, temperature of liquid inside the refrigeration tank and temperature inside the grinding chamber at every minute during the whole grinding operation for all the treatments are observed. The values were observed once the temperature of grinding chamber lowered as possible as and became constant for nearly 15 minutes by circulation of liquid without load (without feed) condition.

Temperature profile inside the grinding chamber for all the treatments are shown graphically below (Fig. 2.1). Fig. 2.1(a) shows the trend of change in temperature for the treatments involving ambient temperature feed while 10.1(b) shows trend for treatments involving low temperature feed.

From fig. 2.1(a), it can be said that the value of temperature inside the grinding chamber stayed all-time high for control treatment whereas all-time low for coolant circulation treatment compared to all other treatments. In case of rise in temperature, treatment involving ambient temperature water circulation showed nearly positive values compared to control treatment while treatment involving chilled water circulation, just negative compared to coolant circulation treatment. There was considerable gap in the graph between the treatments for which refrigerator remained OFF (control and ambient temperature water circulation) and refrigerator remained ON (chilled water and coolant circulation) during the whole grinding operation. For all the treatments, temperature inside the grinding chamber increased rapidly at initiation of grinding, increased moderately in middle and rose even swiftly at the end. Fig. 2.1(b) shows the same trend for treatment involving low temperature feed. The only difference of changing the feed temperature was slight decrease in temperature inside the grinding chamber on the very next minute of feeding in case of low temperature feed. Overall, the initial and final value of temperature inside the grinding chamber for all the treatments are given in Table 2.3.

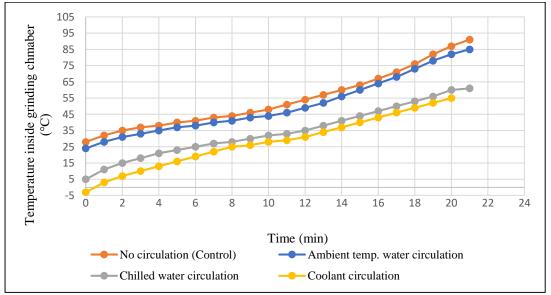


Fig. 2.1(a) Temperature profile of grinding chamber for ambient temperature feed

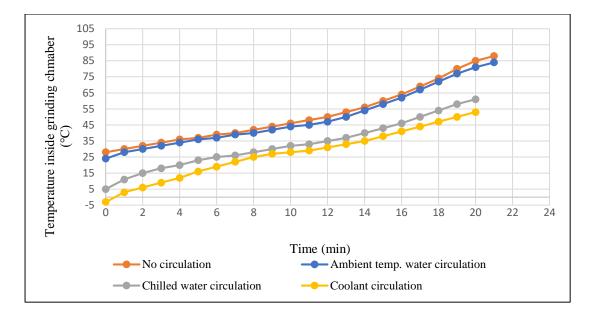


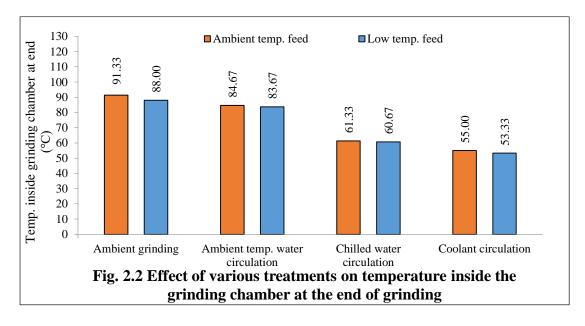
Fig. 2.1(b) Temperature profile of grinding chamber for low temperature feed Fig. 2.1 Temperature profile of grinding chamber for all the treatments

Table 2.3 Initial and final value of temperature inside the grinding cha	mber for
all the treatments	

Treatment	Temperature inside g	rinding chamber (°C)
	At beginning of grinding	At the end of grinding
L ₀ T ₀	28	91
L ₀ T ₁	28	88
L_1T_0	24	85
L_1T_1	24	84
L_2T_0	5	61
L_2T_1	5	61
L ₃ T ₀	-3	55
L ₃ T ₁	-3	53

The data of temperature of liquid entering and leaving the grinding chamber and temperature of liquid in refrigeration tank for all the treatments concluded that increase in temperature inside the grinding chamber made increase in temperature of liquid-out from grinding chamber. That higher temperature liquid entering the refrigeration tank increased the temperature of liquid inside tank and ultimately increased the temperature of liquid-in to grinding chamber. In case of chilled water circulation, refrigeration unit tried to maintain the low temperature of liquid inside the tank and that was the reason why increased temperature of liquid in tank and liquid-in to grinding chamber again decreased and so on, in that case. But the same capacity of refrigeration unit seemed to be failed to maintain the temperature of liquid in tank and so as liquid-in to grinding chamber in case of coolant circulation. So, temperature of liquid inside tank and liquid leaving from grinding chamber in case of coolant circulation increased throughout the entire grinding operation. Overall, the initial and final values of temperature of liquidin and out from grinding chamber and liquid inside refrigeration tank for all the treatments are given in Table 2.4.

Treatment			Tempera	ture (°C)		
	in in out ou		Liquid- out (Final)	Liquid inside tank (Initial)	Liquid inside tank (Final)	
L ₀ T ₀	-	-	-	-	-	-
L_0T_1	-	-	-	-	-	-
L_1T_0	31.5	33.4	32.2	34.8	31	33
L_1T_1	32.1	34.1	32.6	35.2	31.6	33.7
L_2T_0	2.8	3.2	3.5	4.8	2.7	3.1
L_2T_1	2.9	3.2	3.6	4.8	2.7	3.2
L ₃ T ₀	-9.5	-7.9	-8.5	-6.3	-9.7	-8
L_3T_1	-9.6	-8.1	-8.6	-6.5	-9.8	-8.2


Table 2.4 Initial and final value of temperature of circulating liquid for all the treatments

Temperature inside the grinding chamber at the end of grinding

From Table 2.2, it is clear that grinding method affects significantly on the value of temperature inside the grinding chamber at the end of grinding. The significantly highest temperature (89.67 °C) was found for the grinding method without liquid circulation (L_0). The significantly lowest temperature (54.17 °C) was found for the method having coolant circulation around the grinding chamber (L_3). The effect of feed temperature (at 5% level) on the same parameter was also found significant (Table 2.3). The significantly minimum value found was 71.42 °C for ambient temperature feed (T_1). In addition to that, the interaction effect of grinding method and feed temperature (L^*T) on the value of temperature inside the grinding chamber at the end of grinding was found non-significant.

The mean values for this parameter for all the treatments are graphically presented in the following figure (Fig. 2.2). Figure shows that temperature inside the grinding chamber at the end of grinding decreases when moving from left to right *i.e.* treatments involving ambient grinding with ambient feed ($L_0T_0 = 91.33$ °C) to grinding with coolant circulation with low temperature feed ($L_3T_1=53.33$ °C) treatment combination. But fall in temperature becomes substantial with the change in grinding method same,

especially when jumping to chilled water and coolant circulation methods from ambient temperature water circulation. Possibly, resting of considerable amount of time in feed hopper increased the temperature of low temperature feed which in turn diminished its effect to some extent.

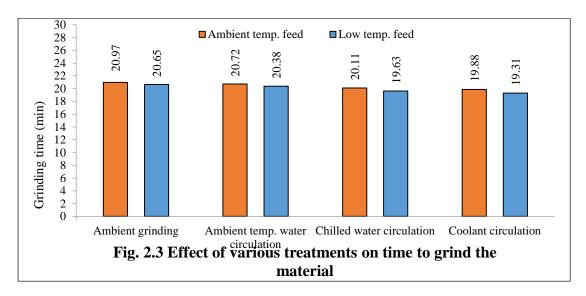
From fig. 2.2, it can be concluded that lowering feed temperature as well as circulation of liquid around the grinding chamber positively decreases the final value of temperature inside the grinding chamber. That was caused by continuous absorption of heat generated during grinding operation. Additionally, lowering the temperature of liquid, circulating around the grinding chamber results in appreciable falling of final temperature inside the grinding chamber. That was caused by absorption of more amount of heat generated during grinding operation due to increase in the value of difference in temperature between grinding chamber and circulating liquid around.

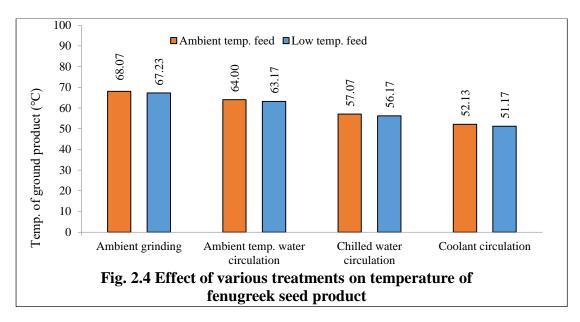
Time to grind the material (Grinding time)

From Table (10.2), it is clear that effect of grinding method on the value of grinding time at 5% level is significant. The highest time (20.81 min) was found for the ambient grinding (L_0). While method L_1 , involving ambient temperature water circulation was at par with the method L_0 . The lowest time (19.60 min) was found for the method having coolant circulation around the grinding chamber (L_3). While method L_2 , involving chilled water circulation was at par with the method L_3 . The effect of feed temperature on the same parameter was also found significant (Table 2.3). The significant maximum value (20.42 min) was found for ambient temperature feed (T_0). While significantly minimum value (19.99 min) was found in case of low temperature feed (T_1). Additionally, the interaction effect of grinding method and feed temperature (L^*T) on the value of time to grind the material was found non-significant.

The mean values for this parameter for all the treatments are graphically presented in the Fig. 2.3. The values varied from 20.97 min for ambient grinding with ambient feed (L_0T_0) to 19.31 min in coolant circulation with low temperature feed

 (L_3T_1) . From the figure, lowering the feed temperature conclusively lowers the time required for grinding the material. That was possibly due to the fact that lowering feed temperature made fenugreek seeds much brittle which in turn made them easy to be ground.




Fig. 2.3 clears that circulation of liquid and in that also lowering the temperature of circulating liquid decreases the value of grinding time for a same temperature feed. But the difference found was significant when moving on chilled water and coolant circulation methods from ambient temperature water circulation. The possible reason for decrease in grinding time might be the reduction in sieve clogging as a cause of melting of fat present in seeds. Circulation of liquid as well as lowering the temperature of circulating liquid lowered the final temperature inside the grinding chamber which caused reduction in the extent of melting of fat and so as reduction in the extent of sieve clogging. Which in turn reduced the time required for grinding.

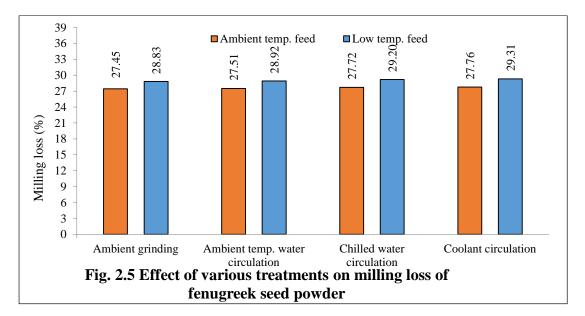
Temperature of ground product

From Table (10.2), it is clear that grinding method affects significantly on the value of temperature of ground powder at the end of grinding. The significantly highest temperature (67.65 °C) was found for the ambient grinding (L_0). The lowest temperature (51.65 °C) was found for the method involving coolant circulation around the grinding chamber (L_3). The effect of feed temperature (at 5% level) on the same parameter was also found significant (Table 2.3). The significantly highest value (60.32 °C) found was for ambient temperature feed (T_0). However, significantly lowest value (59.43 °C) was found in case of low temperature feed (T_1). Besides that, the interaction effect of grinding method and feed temperature (L^*T) on the value of temperature of ground product was found non-significant.

The mean values for the same parameter for all the treatments are graphically presented in the following figure (Fig. 2.4). Figure shows that temperature of ground product decreases when moving from left to right *i.e.* treatments involving ambient grinding with ambient feed (L_0T_0), chilled water and coolant circulation treatments. The

value varied from 68.07 °C for ambient grinding with ambient feed (L_0T_0) to 51.17 °C in coolant circulation with low temperature feed (L_3T_1). But fall in temperature becomes pronounced with the change in grinding method compared to the change in feed temperature keeping the grinding method same.

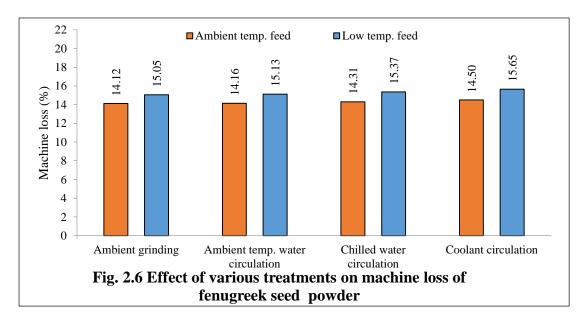
From fig. 2.4, it can be concluded that lowering feed temperature as well as circulating liquid (and lowering the temperature of circulating liquid) around the grinding chamber positively decreases the value of temperature of ground product. That was caused by reduction in the value of temperature inside the grinding chamber at the end of grinding due to the continuous absorption of heat generated during grinding operation.


Sieve clogging

Observations of sieve clogging revealed more deposition in case of control treatment compared to chilled and coolant circulation methods. High temperature in case of control treatment possibly resulted in melting of fat to a greater extent which in turn caused higher percentages of clogging. However, clogging of sieve was not considerable in any of the treatments and it could easily be cleaned by cleaning-brush.

Milling loss

From Table (10.2), it is clear that effect of grinding method on the value of milling loss at 5% level is non-significant. While the effect of feed temperature on the same parameter was found significant. The value found was 29.07% for low temperature feed (T_1). While value in case of ambient temperature feed (T_0) was above par with that of T_1 . Additionally, the interaction effect of grinding method and feed temperature (L*T) on the value of per cent milling loss was found non-significant.


The mean values for this parameter for all the treatments are graphically shown in the following figure (Fig. 2.5). The values did not vary to a considerable extent while changing grinding method, keeping feed temperature same. It varied from 27.45 to 27.76% for ambient temperature feed and 28.83 to 29.31% for low temperature feed among all grinding methods. While from the figure, lowering the feed temperature conclusively increases the value of per cent milling loss. That was attributed to the fact that lowering feed temperature made fenugreek seeds more brittle which in turn made them ground to finer particles comparatively. The formation of finer particles could easily be lost in the form of dust particles. That ultimately increased the value of per cent milling loss in case of low temperature feed.

Machine loss

Table (10.2) shows that effect of grinding method on the value of machine loss at 5% level is non-significant. While the effect of feed temperature on the same parameter was found significant. The value found was 15.30% for low temperature feed (T_1). While value in case of ambient temperature feed (T_0) was above par with that of T_1 . Additionally, the interaction effect of grinding method and feed temperature (L*T) on the value of per cent machine loss was found non-significant.

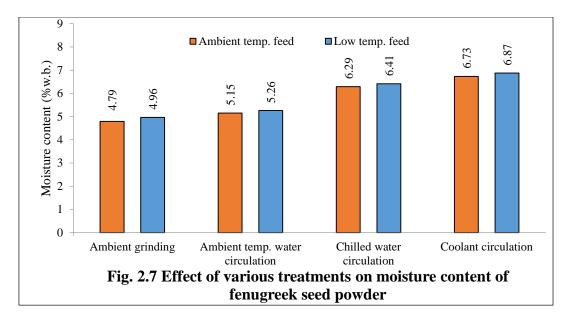
The mean values for this parameter for all the treatments are graphically shown in the following figure (Fig. 2.6). The values did not vary to a considerable extent while changing grinding method, keeping feed temperature same. It varied from 14.12 to 14.50% for ambient temperature feed and 15.05 to 15.65% for low temperature feed among all grinding methods. While from the figure, lowering the feed temperature conclusively increases the value of per cent machine loss. This is due to the increase in milling loss in the form of dust in case of low temperature feed. Particles lost in the form of dust stuck to the internal surfaces of product outlet area which in turn increased the value of per cent machine loss.

10.2.1.4 Biochemical parameters of ground fenugreek seed powder

The values obtained for various biochemical parameters of ground fenugreek seed powder obtained through different treatments are given in Table 2.5 and are discussed separately below.

Effect	Moistur e content (% w.b.)	Total carbohydra te (%)	Crude fibre (%)	Mucilag e (%)	True protei n (%)	Total oil (%)	Total ash (%)	Total pheno l (mg/g)	Total flavonoid (mg QE/g of extract)	Antioxidant activity (DPPH scavenging %)	Volatil e oil (%)
	Grinding method (L)										
Without liquid circulation (L ₀)	4.88	53.40	3.99	26.67	14.44	5.58	3.77	3.96	6.48	8.28	0.32
Ambient temperature water circulation (L_1)	5.20	54.86	4.26	25.95	15.16	5.86	3.70	4.59	7.43	10.39	0.33
Chilled water circulation (L ₂)	6.35	57.46	5.37	24.43	16.33	6.75	3.49	6.83	10.67	18.06	0.40
Coolant circulation (L ₃)	6.80	58.89	5.68	23.65	17.02	7.13	3.41	7.60	11.91	20.88	0.42
S. Em±	0.0276	0.1780	0.0230	0.1368	0.1006	0.0456	0.0134	0.1003	0.1443	0.2633	0.0020
C. D. at 5%	0.0829	0.5337	0.0691	0.4102	0.3015	0.1367	0.0403	0.3008	0.4327	0.7894	0.0059

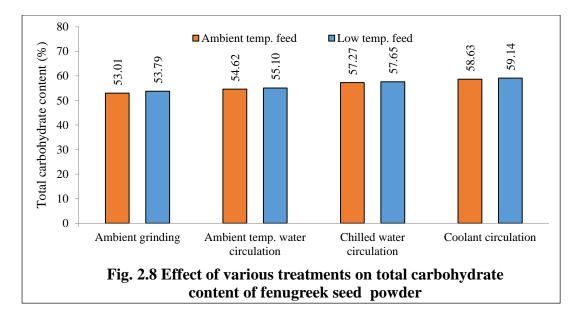
 Table 2.5 Effect of grinding method and feed temperature on biochemical parameters of ground fenugreek seed powder


Effect	Moistur e content (% w.b.)	Total carbohydrat e (%)	Crud e fibre (%)	Mucilag e (%)	True protei n (%)	Total oil (%)	Total ash (%)	Total pheno l (mg/g)	Total flavonoid (mg QE/g of extract)	Antioxidant activity (DPPH scavenging %)	Volatil e oil (%)
	Feed temperature (T)										
Ambient temperature feed (T_0)	5.74	55.88	4.78	25.32	15.61	6.28	3.60	5.63	8.95	14.02	0.37
Low temp. feed (T_1)	5.88	56.42	4.87	25.03	15.87	6.38	3.58	5.85	9.30	14.79	0.37
S. Em±	0.0195	0.1259	0.016 3	0.0967	0.0711	0.0322	0.009 5	0.0710	0.1020	0.1862	0.0014
C. D. at 5%	0.0586	0.3774	0.048 9	0.2900	0.2132	0.0966	NS	0.2127	0.3059	0.5582	0.0042
		Interac	tion (L*	τ)							
S. Em±	0.0391	0.2517	0.032 6	0.1935	0.1422	0.0645	0.019 0	0.1419	0.2041	0.3724	0.0028
C. D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
C. V%	1.1657	0.7765	1.170 2	1.331	1.5654	1.7638	0.916 4	4.2795	3.8744	4.4777	1.3105

Moisture content

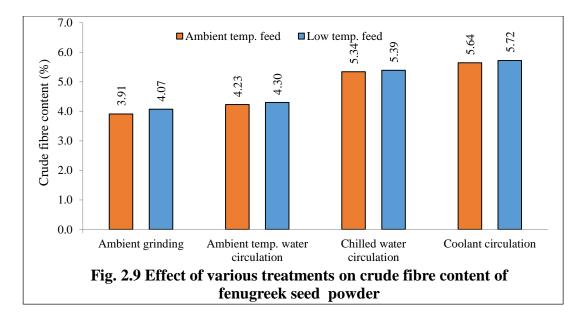
The values found for moisture content in ground powder of each treatment with three replications are noted. The effect of two factors, *viz.* grinding method and feed temperature on the same parameter is shown in Table 2.5.

From the Table (10.5), it can be observed that grinding method affects significantly on the value of moisture content of ground product at 5% level of significance. The lowest value (4.88%) was found for the grinding method without liquid circulation (L_0) while method involving coolant circulation around the grinding chamber (L_3) exhibited to retain higher percentages of moisture (6.80%). The effect of feed temperature on the value of moisture content was also found significant (at 5% level). The values found were 5.74 and 5.88% for ambient temperature and low temperature feed, respectively. In addition to individual effects, the interaction effect of grinding method and feed temperature (L*T) on the same parameter was found non-significant.


The mean values of moisture content of ground powder for all the treatments are graphically presented in the following figure (Fig. 2.7). Figure reveals that the value of moisture content of ground powder increases when moving from left to right *i.e.* treatments involving ambient grinding to ambient water, chilled water and coolant circulation treatments. Values varied from minimum of 4.79% for ambient grinding $(L_0 T_0)$ to maximum of 6.87% in coolant circulation with low temperature feed (L_3T_1) . Increase in moisture content of ground powder with moving from no circulation to coolant circulation might be attributed to the condensation of moisture at low temperature. Circulation of liquid around the grinding chamber before starting of grinding operation caused atmospheric moisture to be condensed inside the grinding chamber which in turn added moisture in the ground product. Additionally, rise of the graph seems to be gradual except moving from ambient temperature water to chilled water circulation grinding method. That might be related to more amount of condensation at internal surfaces of grinding chamber due to increase in temperature difference between circulating liquid and surrounding. The same reason of condensation at low temperature can be concluded for increasing moisture content of ground powder with low temperature feed, irrespective of grinding method. Further, lower temperature of ground powder might decrease the loss of moisture in surrounding by evaporation. However, decrease in the value of moisture content in ground powder compared to moisture of raw seeds (8.129%) for all the treatments was observed. That might be due to the loss of moisture at higher temperature generated during grinding operation.

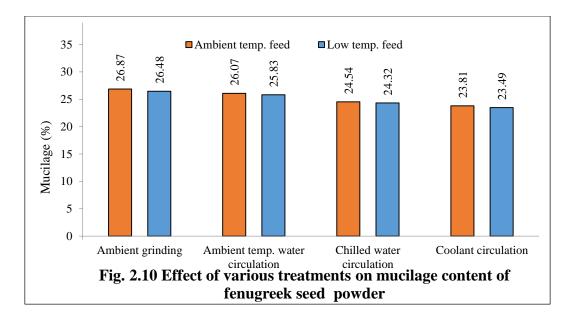
Total carbohydrate content

The Table (10.5) clears that grinding method affects significantly on the value of total carbohydrate of ground product at 5% level of significance. The lowest value (53.40%) was found for the grinding method without liquid circulation (L_0) while method involving coolant circulation around the grinding chamber (L_3) found to retain higher percentages of carbohydrate (58.89%). Besides that, the value found for chilled water circulation method (L_2) was quite competitive with that of method L_3 . The effect of feed temperature on the value of total carbohydrate content was also found statistically significant at the same level of significance (Table 2.7). The values found were 55.88 and 56.42% for ambient temperature and low temperature feed, respectively. Further, the interaction effect of grinding method and feed temperature (L*T) on the value of total carbohydrate was found non-significant.


The mean values of total carbohydrate content of ground powder for all the treatments are graphically displayed in the following figure (Fig. 2.8). Figure reveals that the value of total carbohydrate in ground powder increases when moving from treatments involving no circulation to ambient, chilled water and coolant circulation treatments. Values varied from minimum of 53.01% for control treatment (L_0T_0) to maximum of 59.14% in coolant circulation with low temperature feed (L_3T_1) . Increase in total carbohydrate content in ground powder with moving from left to right in the graph might be attributed to decrease in elevation of temperature during grinding operation. As higher temperature causes carbohydrate conversion, it decreases the percentages of total carbohydrate.

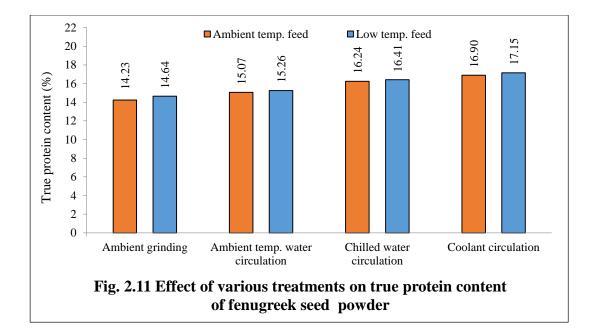
Crude fibre content

Table (10.5) shows that grinding method affects significantly on the value of crude fibre in ground product at 5% level of significance. The lowest value (3.99%) was found for the grinding method without liquid circulation (L_0). On the other hand, method involving coolant circulation around the grinding chamber (L_3) found to have higher percentages of crude fibre (5.68%). Additionally, value observed in ambient temperature water circulation method (L_1) was fairly above par with that of L_0 . Besides grinding method, the effect of feed temperature on the same parameter was also found statistically significant at the same level of significance. The values found were 4.78 and 4.87% for ambient temperature and low temperature feed, respectively. Further, the interaction effect of grinding method and feed temperature (L*T) on the value of crude fibre content was found non-significant.


The mean values of crude fibre of ground powder for all the treatments are graphically demonstrated in the following figure (Fig. 2.9). Figure indicates that the value of crude fibre in ground powder increases when moving from treatments involving no circulation to coolant circulation treatments. The mean values varied from minimum of 3.91% for control treatment (L_0T_0) to maximum of 5.72% in coolant circulation with low temperature feed (L_3T_1). Increase in crude fibre content in ground powder with moving from left to right in the graph might be attributed to decrease in elevation of temperature during grinding operation. Higher temperature developed during grinding operation might cause the conversion of insoluble dietary fibre to soluble dietary fibre which in turn perhaps decreased the percentages of crude fibre in ground powder, as crude fibre is composed of insoluble cellulose and lignin. Rise in temperature breaks the weak bonds between polysaccharide chains and split glycosidic linkages in the dietary fibre polysaccharides. So, the architecture of the fibre matrix may be modified and insoluble fibre changes to soluble dietary fibre.

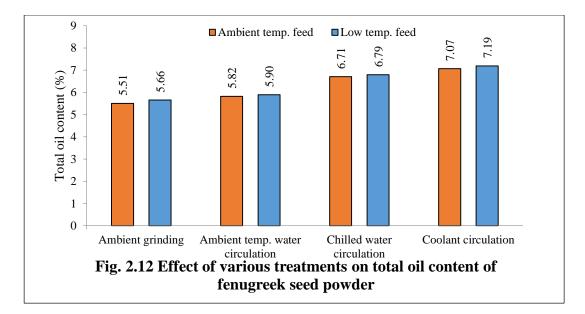
Mucilage

Table (10.5) shows that grinding method affects significantly on the value of mucilage in ground product at 5% level of significance. For the grinding method, the lowest value (23.65%) was found for the method involving coolant circulation around the grinding chamber (L_3) and highest in case of no circulation (26.67%). Besides grinding method, the effect of feed temperature on the same parameter was also found statistically significant at the same level of significance. The values found were 25.32 and 25.03% for ambient temperature and low temperature feed, respectively. Further, the interaction effect of grinding method and feed temperature (L*T) on the value of mucilage content was found non-significant.


The mean values of mucilage of ground powder for all the treatments are graphically shown in the following figure (Fig. 2.10). Figure indicates that the value of mucilage in ground powder decreases when moving from treatments involving no circulation to ambient, chilled water and coolant circulation treatments. The mean values varied from maximum of 26.87% for control treatment (L_0T_0) to minimum of 23.49% in coolant circulation with low temperature feed (L_3T_1). The same reason of decrease in elevation of grinding chamber temperature during grinding operation could be given for decrease in mucilage content in ground powder with moving from left to right. Higher temperature developed during grinding operation might cause the conversion of insoluble dietary fibre to soluble dietary fibre which in turn possibly increased the percentages of mucilage in ground powder, as mucilage is a kind of soluble dietary fibre. As a cause of rise in temperature, the architecture of the fibre matrix may be modified and insoluble fibre changes to soluble dietary fibre.

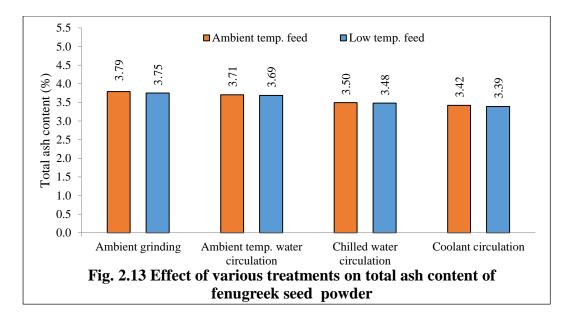
True protein content

Effect of grinding method on the value of true protein content of ground powder was found significant at 5% level of significance (Table 2.5). The lowest value (14.44%) was found for the grinding method without liquid circulation (L_0) while method involving coolant circulation around the grinding chamber (L_3) found to produce powder having higher percentages of true protein (17.02%). The effect of feed temperature on the value of true protein was also found statistically significant at 5% level of significance. The value found for low temperature feed (15.87%) was just above par with that of ambient temperature feed (15.61%). Additionally, the interaction effect of grinding method and feed temperature (L*T) on the value of true protein content was found non-significant at the same level of significance.


The mean values of true protein of ground powder for all the treatments are graphically displayed in the following figure (Fig. 2.11). Figure indicates that the value of true protein of ground powder increases when moving from treatments involving no circulation to ambient, chilled water and coolant circulation treatments. Values ranged from minimum of 14.23% for control treatment (L_0T_0) to maximum of 17.15% in coolant circulation with low temperature feed (L_3T_1). Increase in true protein content of ground powder with moving from left to right in the graph might be attributed to the decrease in elevation of temperature during grinding operation. As higher temperature causes protein denaturation, it decreases the percentages of true protein.

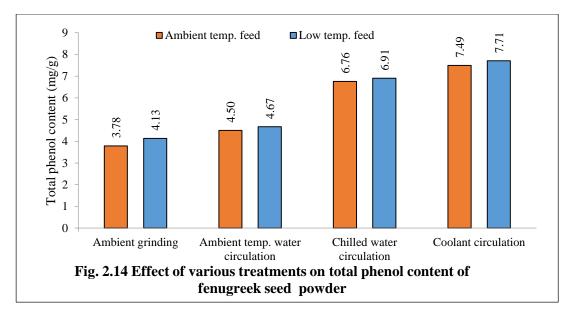
Total oil content

From the Table (10.5), it can be seen that grinding method affects significantly on the value of total oil content of ground product at 5% level of significance. The lowest value (5.58%) was found for the grinding method without liquid circulation (L_0). While the method incorporating coolant circulation (L_3) exhibited to produce powder containing comparatively higher percentages of fixed oil (7.13%). Additionally, the value observed in case of chilled water circulation method (6.75%) was fairly competitive with that of found in L_3 . The effect of feed temperature (at 5% level) on the same parameter was also found significant. The values found were 6.28 and 6.38% for ambient temperature and low temperature feed, respectively. In addition to individual effects, the interaction effect of grinding method and feed temperature (L*T) on the value of total oil content in ground powder was found non-significant at the same level of significance.


The mean values of total oil of ground powder for all the treatments are graphically presented in the following figure (Fig. 2.12). Figure shows that the value of total oil in ground powder increases when moving from left to right *i.e.* treatments involving no circulation to ambient temperature, chilled water and coolant circulation treatments. Values varied from minimum of 5.51% for control treatment (L_0T_0) to maximum of 7.19% in coolant circulation with low temperature feed (L_3T_1). Increase in oil percentages in ground powder with moving from no circulation to coolant circulation might be attributed to the reduction in the degree of melting of fat present in the seeds. Moving from left to right in the graph decreased the value of temperature inside the chamber at the end of grinding operation which in turn decreased the extent of melting and sticking of fat on grinding surfaces and sieve. That caused increase in the oil percentages in ground powder. While higher temperature developed during grinding operation caused reduction in the value of total oil in control treatment.

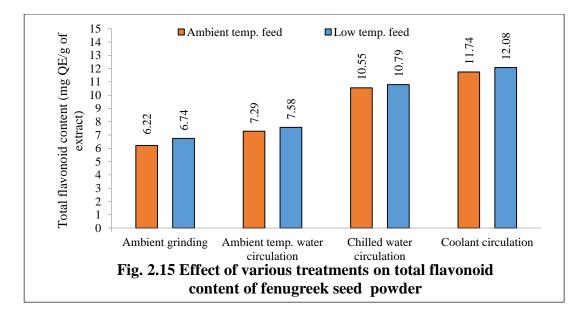
Total ash content

From the Table (10.5), it can be concluded that grinding method affects significantly on the value of total ash content of ground product at 5% level of significance while feed temperature does not do so. For the grinding method, the lowest value (3.41%) was found for the method involving coolant circulation around the grinding chamber (L_3) and highest in case of no circulation (3.77%). Besides that, the interaction effect of grinding method and feed temperature (L*T) on the same parameter was also found non-significant at the same level of significance.


The mean values of total ash of ground powder for all the treatments are graphically shown in the following figure (Fig. 2.13). Figure indicates that the value of total ash in ground powder decreases when moving from treatments involving no circulation to ambient, chilled water and coolant circulation treatments. Values ranged from maximum of 3.79% for control treatment (L_0T_0) to minimum of 3.39% in coolant circulation with low temperature feed (L_3T_1). Decrease in total ash content of ground powder with moving from left to right in the graph might be attributed to the increased value of moisture in ground powder. Proceeding from no circulation to coolant circulation grinding treatments, temperature of grinding chamber decreased which caused increase in the moisture content of ground powder. Increased moisture caused decrease in the solid percentages of ground powder which in turn caused reduction in the value of ash content. So, grinding method did not affect the value of total ash of the ground powder directly, instead variation in the walue of ash content.

Total phenol content

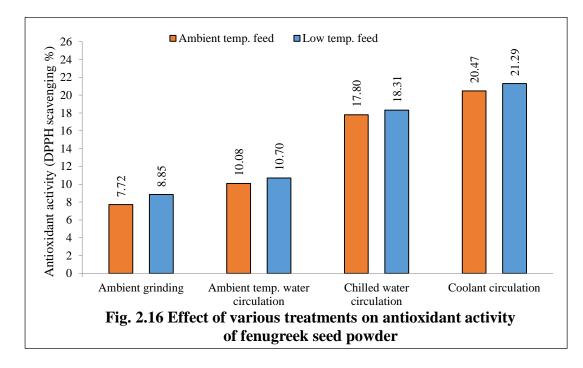
From the Table (10.5), it can be observed that grinding method affects significantly (at 5% level) on the value of total phenol content of ground product. The lowest value (3.96 mg/g) was found for the grinding method without liquid circulation (L_0) while method having coolant circulation around the grinding chamber (L_3) found to have highest value of total phenol (7.60%) in ground powder. The value obtained in ambient temperature water circulation was above par with that of method L_0 and value in the case of chilled water circulation was below par with that of method L_3 . Additionally, the effect of feed temperature on the value of total phenol was also found significant statistically at 5% level of significance. The value found in case of low temperature feed (5.63 mg/g) was just above par with that of ambient temperature feed (5.85 mg/g). Besides that, the interaction effect of grinding method and feed temperature (L*T) on the value of total phenol content of ground powder was found non-significant at the same level of significance.


The mean values of total phenol of ground powder for all the treatments are graphically displayed in the following figure (Fig. 2.14). Figure shows that the value of total phenol of ground powder increases when moving from treatments involving no circulation to coolant circulation treatments. Values ranged from minimum of 3.78% for control treatment (L_0T_0) to maximum of 7.71% in coolant circulation with low temperature feed (L_3T_1). Increase in total phenol of ground powder with moving from left to right in the graph might be due to the fall in the value of temperature inside the grinding chamber at the end of grinding operation. As higher temperature causes degradation of phenolic compounds, it decreases total phenol content in ground powder. Additionally, a sudden rise in the graph is observed when moving from ambient temperature water to chilled water circulation grinding method. This might be ascribed to the increase in temperature difference of grinding chamber between two treatments.

Total flavonoid content

Table (10.5) shows that grinding method affects significantly on the value of total flavonoid content of ground product at 5% level of significance. The lowest value (6.48 mg QE/g extract) was found for the grinding method without liquid circulation (L_0) while the highest (11.91 mg QE/g extract) for the method involving coolant circulation around the grinding chamber (L_3) . Additionally, the value obtained in ambient temperature water circulation was above par with the method L_0 and value in the case of chilled water circulation was below par with the method L_3 . The effect of feed temperature on the value of total flavonoid was also found statistically significant (at 5% level). The values found in case of ambient and low temperature feed were 8.95 and 9.30 mg QE/g extract, respectively. Besides that, the interaction effect of grinding method and feed temperature (L*T) on total flavonoid content of ground powder was found non-significant at the same level of significance.

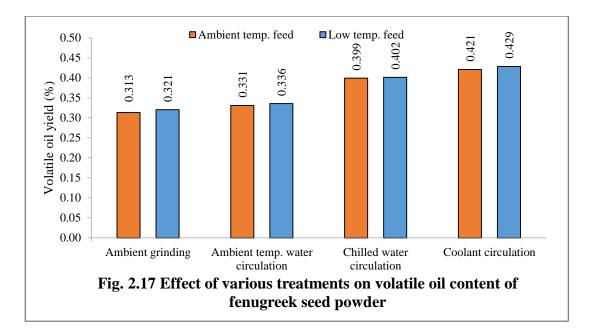
The mean values of total flavonoid of ground powder for all the treatments are graphically shown in the following figure (Fig. 2.15). Figure indicates that the value of total flavonoid of ground powder increases when moving from treatments involving no circulation to ambient, chilled water and coolant circulation treatments. Values ranged from minimum of 6.22 mg QE/g extract for control treatment (L_0T_0) to maximum of 12.08 mg QE/g extract in coolant circulation with low temperature feed (L_3T_1). Increase in total flavonoid of ground powder with moving from left to right in the graph might be due to the decrease in the elevation of temperature inside the grinding chamber at the end of grinding operation. As flavonoids are the largest group of phenolic compounds (naturally occurring) (Sulaiman and Balachandran, 2012), higher temperature engenders degradation of flavonoids and it decreases total flavonoid content in ground powder. Further, a sudden rise in the graph occurs when moving from ambient temperature water to chilled water circulation grinding chamber.



Antioxidant activity

From the Table (10.5), it is clear that grinding method affects significantly on the value of antioxidant activity of ground product at 5% level of significance. The lowest value (8.28 %) was found for the grinding method without liquid circulation (L_0) while the highest (20.88 %) for the method involving coolant circulation around the grinding chamber (L_3). Additionally, the value obtained in ambient temperature water circulation was above par with that of method L_0 and value in the case of chilled water circulation was below par with that of method L_3 . The effect of feed temperature on the value of same parameter was also found statistically significant at 5% level of significance. The value found in case of low temperature feed (14.79%) was above par with that of ambient temperature feed (14.02%). Besides that, the interaction effect of grinding method and feed temperature (L*T) on the value of antioxidant activity was found non-significant at the same level of significance.

The mean values of antioxidant activity of ground powder for all the treatments are graphically demonstrated in the following figure (Fig. 2.16). Figure shows that the value of antioxidant activity of ground powder increases when moving from treatments involving no circulation to ambient, chilled water and coolant circulation treatments. Values ranged from minimum of 7.72 % DPPH scavenging for control treatment (L_0T_0) to maximum of 21.29 % DPPH scavenging in coolant circulation with low temperature feed (L_3T_1). The same reason of increase in grinding chamber temperature can be concluded for decrease in DPPH scavenging per cent when moving from right to left in the graph. As phenolics are the largest group of phytochemicals which account for most of the antioxidant activity in plants (Sulaiman and Balachandran, 2012), degradation of phenolic compounds at higher temperature also caused decrease in antioxidant activity percentages in ground fenugreek seed powder. Besides that, Dixit et al. (2005) and Bukhari et al. (2008) also reported antioxidant activity to be correlated with polyphenols present in fenugreek seed extract. In addition to that, a sudden rise in the graph occurs when moving from ambient temperature water to chilled water circulation


grinding method. This might also be due to the increase in temperature difference of grinding chamber which caused trigger rise in antioxidant activity percentages.

Volatile oil content

From the Table (2.5), it can be concluded that grinding method affects significantly on the value of volatile oil content of ground product at 5% level of significance. The lowest value (0.32%) was found for the grinding method without liquid circulation (L_0) while the highest (0.42%) for the method involving coolant circulation around the grinding chamber (L_3). Additionally, the value obtained in the case of chilled water circulation was competitive with the value of L_3 . The effect of feed temperature on the value of volatile oil per cent was also found statistically significant at 5% level of significance. The value found was 0.37% for both, ambient and low temperature feed. Besides that, the interaction effect of grinding method and feed temperature (L*T) on the same parameter was found non-significant at the same level of significance.

The mean values of volatile oil content of ground powder for all the treatments are graphically displayed in the following figure (Fig. 2.17). Figure shows that the value of volatile oil in ground powder increases when moving from treatments involving no circulation to ambient, chilled water and coolant circulation treatments. Values ranged from minimum of 0.313 % for control treatment (L_0T_0) to maximum of 0.429 % in coolant circulation with low temperature feed (L_3T_1). Increase in volatile oil yield of ground powder with moving from left to right in the graph may be credited to the fall of temperature inside the grinding chamber. As higher temperature developed during ambient grinding process causes loss of volatile oil (Singh and Goswami, 1997), powder obtained through control treatment showed the lowest percentages of volatile oil. The trend of reduction in volatile oil percentages with increase in grinding chamber temperature has also been reported by many researchers previously.

Volatile metabolites

Volatile components present in ground powder of fenugreek seeds were identified using GC-MS QTOF. The chromatograms obtained in the analysis of extract of ground powder, obtained through ambient grinding with ambient temperature feed (L_0T_0) and coolant circulation with low temperature feed (L_3T_1) are shown in following figures (Fig. 2.18 and Fig. 2.19).

There were 30 compounds present in the extract of treatment L_0T_0 while in case of treatment L_3T_1 , total 48 compounds were identified. The compounds found from the extract L_0T_0 and L_3T_1 are given in Table 2.6 and Table 2.7 respectively. Out of all the compounds, 13 compounds were common in extracts of both the treatments. There were 35 compounds which were identified in the extract of treatment L_3T_1 but were not detected in case of control treatment.

In addition to that, a compound named 3-Amino-4, 5-dimethyl-2(5H)-furanone was identified in the extract of treatment L_3T_1 , which is the precursor of sotolone (characteristic and dominant impact flavour compound of fenugreek seeds). This compound was absent in case of extract of control treatment.

Table 2.6: Compounds found in extract of seed powder of treatment L_0T_0
(Ambient grinding + Ambient temperature feed)

Sr. No.	Name of compound	Mass	RT (Min)	Relativ e amount (% Area)
1.	Vitamin E	430.4	75.051	0.68
2.	Hexadecanoic acid, methyl ester	270.3	55.159	0.76
3.	2,6-Difluorobenzoic acid, 4-nitrophenyl ester	279.0	43.851	0.70
4.	9,12-Octadecadienoic acid, methyl ester	294.3	58.566	1.09
5.	1,8,11-Heptadecatriene, (Z,Z)-	234.2	59.362	3.45

6.	Pentanoic acid, 5-hydroxy-, 2,4-di-t- butylphenyl esters	306.2	44.349	0.69
7.	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9- diene-2,8-dione	276.2	54.999	1.06
8.	n-Hexadecanoic acid	256.2	55.945	2.77
9.	Epicubenol	222.2	47.405	1.35
10.	2-n-Propylaziridine	85.1	21.11	30.89
11.	Hexadecanoic acid, 2-hydroxy-1-	330.3	65.862	1.43
10	(hydroxymethyl)ethyl ester	05.1	10.00	14.10
12.	2-n-Propylaziridine	85.1	18.88	14.13
13.	Dodecane, 5-methyl-	184.2	50.204	1.08
14.	(S)-(-)-1-Amino-2-(methoxymethyl)- pyrrolidine	130.1	18.885	4.56
15.	5-Nonadecen-1-ol	282.3	59.47	2.82
16.	9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)-	292.2	58.689	0.72
17.	2,5-Pyrrolidinedione, 1-ethyl-	127.1	27.366	0.46
18.	7-Octylidenebicyclo[4.1.0]heptane	206.2	68.688	2.08
19.	9-Octadecenoic acid	282.3	68.737	1.17
20.	Decanamide, N-(2-hydroxyethyl)-	215.2	62.687	0.68
21.	1-Methyl-2-methylene-trans-decalin	164.2	73.203	1.17
22.	3-Penten-2-one, 4-methoxy-	114.1	45.418	1.16
23.	Fumaric acid, 2-nitrophenyl			
-01	cyclohexylmethyl ester	333.1	45.087	3.88
24.	Decanamide, N-(2-hydroxyethyl)-	215.2	62.579	0.90
25.	Hexazinone	252.2	70.656	0.54
26.	Ethanone, 1-(4-amino-2-methylaminothiazol- 5-yl)-	171	70.742	0.37
27.	4-Pentenoic acid, 2-(formylamino)-, ethyl ester	171.1	73.22	1.08
28.	.betad-Glucopyranoside, methyl 2,3,4-tris- O-(phenylmethyl)-	464.2	75.826	11.62
29.	Pyridine, 2-tridecyl-	261.2	73.342	1.41
30.	Fumaric acid, monoamide, N-(2,5- dimethoxyphenyl)-, undecyl ester	405.3	75.3	1.68
31.	Glycine, 2-cyclohexyl-N-(but-3-yn-1- yl)oxycarbonyl-, dodecyl ester	421.3	75.667	3.28
32.	phenol, 4-[[4-[[4- (phenylamino)phenyl]amino]phenyl]amino]-	367.2	75.659	0.34
L	<u> </u>	1	1	1

Loss of compounds in case of control treatment might be attributed to the increase in the temperature of grinding chamber throughout the whole operation as compared to the treatment involving coolant circulation and low temperature feed.

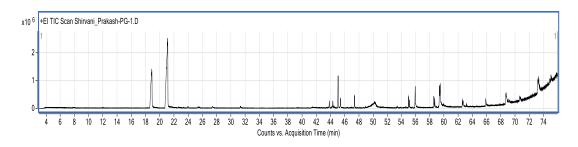


Fig. 2.18 GC-MS chromatogram of fenugreek seed powder extract of ambient grinding with ambient temperature feed treatment (L_0T_0)

Table 2.7 Compounds found in extract of seed powder of treatment L_3T_1 (Coolant
circulation + Low temperature feed)

Sr. No.	Name of compound		RT (Min)	Relative amount
				(%
				Area)
1.	Tetradecanoic acid	228.2	51.549	2.19
2.	Vitamin E	430.4	75.048	0.42
3.	9,12-Octadecadienoic acid, methyl ester	294.3	58.562	2.99
4.	2,6-Difluorobenzoic acid, 4-nitrophenyl ester	279	43.849	0.59
5.	Phthalic acid, di(6-methylhept-2-yl) ester	390.3	66.526	0.17
6.	Undecane, 3,8-dimethyl-	184.2	50.201	0.39
7.	9,12-Octadecadienoyl chloride, (Z,Z)-	298.2	58.687	2.39
8.	n-Hexadecanoic acid	256.2	55.957	2.41
9.	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca- 6,9-diene-2,8-dione	276.2	55	0.83
10.	Phthalic acid, hept-4-yl isobutyl ester	320.2	53.872	0.14
11.	Hexadecanoic acid, 2-hydroxy-1- (hydroxymethyl)ethyl ester	330.3	65.866	3.06
12.	Hexadecanoic acid, methyl ester	270.3	55.148	1.14
13.	Pentanoic acid, 5-hydroxy-, 2,4-di-t- butylphenyl esters	306.2	44.351	0.41
14.	1,8,11,14-Heptadecatetraene, (Z,Z,Z)-	232.2	68.836	6.21
15.	3-Amino-4,5-dimethyl-2(5H)-furanone	127.1	27.336	0.44
16.	Methyl stearate	298.3	59.187	0.21
17.	2-Pentadecanone, 6,10,14-trimethyl-	268.3	53.382	0.17
18.	1,8,11,14-Heptadecatetraene, (Z,Z,Z)-	232.2	64.759	1.86
19.	Linoelaidic acid	280.2	59.417	6.52
20.	2-n-Propylaziridine	85.1	18.89	8.35
21.	9,12-Octadecadienoic acid, methyl ester	294.3	64.637	1.28
22.	Myo-Inositol, 4-C-methyl-	194.1	50.105	2.44
23.	Epicubenol	222.2	47.404	0.71
24.	2-n-Propylaziridine	85.1	21.03	11.25
25.	Hexadecanoic acid, 2-hydroxy-1- (hydroxymethyl)ethyl ester	330.3	61.648	0.83

26.	Carbonic acid, 2-dimethylaminoethyl ethyl ester	161.1	65.004	0.22
27.	Octadecanoic acid, 2,3-dihydroxypropyl	358.3	69.114	0.57
28.	ester cis-3-Methyl-endo-	150.1	68.705	12.33
	tricyclo[5.2.1.0(2.6)]decane			
29.	3-Penten-2-one, 4-methoxy-	114.1	31.335	0.32
30.	(1S,4aS,4bS,7S,8aS,10aS)-7-Isopropyl- 1,4a- dimethyltetradecahydrophenanthrene	262.3	73.199	2.02
31.	Cyclopropane, 1-ethenyl-2-hexenyl-, [1.alpha.,2.beta.(E)]-(.+/)-	150.1	64.876	0.21
32.	deltaNonalactone	156.1	25.502	0.21
33.	3,6-Heptanedione	128.1	49.995	0.13
34.	Bicyclo[5.2.0]nonane, 4-methylene- 2,8,8-trimethyl-2-vinyl-	204.2	73.331	2.08
35.	Oxazolidine, 2,2-diethyl-3-methyl-	143.1	11.962	0.13
36.	3-Penten-2-one, 4-methoxy-	114.1	45.415	0.78
37.	Palmitic acid vinyl ester	282.3	61.761	0.28
38.	Propanoyl chloride, 3-chloro-	126.0	23.948	0.15
39.	Cholest-5-en-3-ol, (3.alpha.)-	386.4	74.882	0.17
40.	Oleic anhydride	546.5	68.758	6.81
41.	Phthalic acid, 2,2,2-trifluoroethyl propylester	290.1	54.657	0.13
42.	Decanamide, N-(2-hydroxyethyl)-	215.2	62.686	1.52
43.	Decanamide, N-(2-hydroxyethyl)-	215.2	62.578	1.59
44.	Thiophene-2-acetic acid, 2- dimethylaminoethyl ester	213.1	65.133	0.30
45.	Fumaric acid, 2-nitrophenyl cyclohexylmethyl ester	333.1	45.086	3.59
46.	Lupeol	426.4	70.596	1.75
47.	Nonanedioic acid, bis(2-ethylhexyl) ester	412.4	70.644	1.01
48.	Stigmasta-3,5-diene	396.4	72.774	0.20
49.	Acrylic acid, 4-cyclopropylidenebutyl ester	166.1	59.505	1.64
50.	Propanoic acid, anhydride	130.1	48.118	0.28
51.	Cyclohexyl methylphosphonofluoridate	180.1	44.24	0.20
52.	(7R)-cis-anti-cis- Tricyclo[7.3.0.0(2,6)]dodecan-7-ol	180.2	70.64	1.40
53.	Stigmast-8(14)-en-3.betaol	414.4	67.443	2.39
54.	3H,6H-Thieno[3,4-c]isoxazole, 3a,4- dihydro-6-(1-methylethyl)-	171.1	73.587	0.19

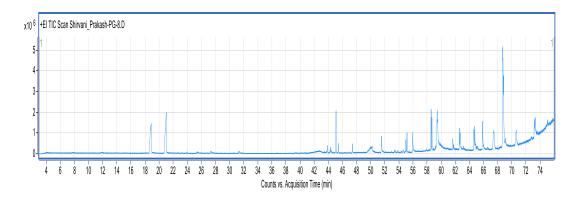
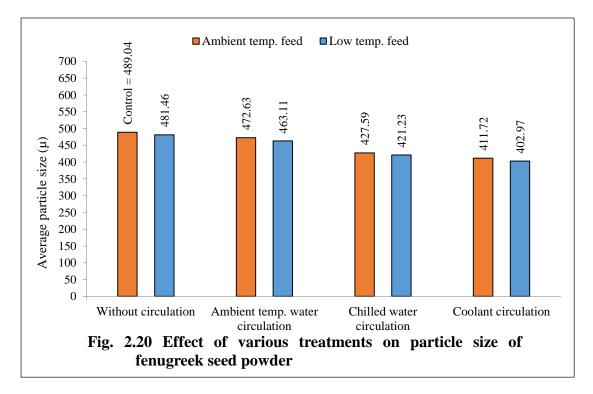


Fig. 2.19 GC-MS chromatogram of fenugreek seed powder extract of in coolant circulation with low temperature feed treatment L₃T₁

Particle size analysis

The values obtained for the effect of two factors, *viz*. grinding method and feed temperature on average particle size of ground powder of each treatment the same parameter is shown in the Table 2.8.


From the Table 2.8, it can be observed that grinding method affects significantly on the value of average particle size of ground product at 5% level of significance. Additionally, a significant difference was found among all the methods. The finest value (407.35 μ) was found for the grinding method involving coolant circulation around the grinding chamber (L₃) while the coarsest value (485.25 μ) for the method without liquid circulation (L₀). Further, the effect of feed temperature on the value of average particle size was also found statistically significant (at 5% level). The value found was 450.24 μ for ambient temperature feed. Comparing with that, the value (442.19) found in case of low temperature feed was significantly less. Besides that, the interaction effect of grinding method and feed temperature (L*T) on the same parameter was found non-significant at the same level of significance.

Effect	Average particle size (µ)
Grinding method (L	.)
Without liquid circulation (L ₀)	485.25
Ambient temperature water circulation (L_1)	467.87
Chilled water circulation (L_2)	424.41
Coolant circulation (L ₃)	407.35
S. Em±	0.5846
CD at 5%	1.7527
Feed temperature (1])
Ambient temperature feed (T_0)	450.24
Low temp. feed (T_1)	442.19
S. Em±	0.4134

 Table 2.8 Effect of grinding method and feed temperature on other particle size of fenugreek seed powder

CD at 5%	1.2393
Interaction (L*T)	
S. Em±	0.8267
CD at 5%	NS
CV%	0.3209

The mean values of particle size of ground powder for all the treatments are graphically demonstrated in the following figure (Fig. 2.20). Figure shows that the value of average particle size in ground powder decreases when moving from treatments involving ambient grinding to ambient, chilled water and coolant circulation treatments. Values ranged from maximum of 489.04 μ for control treatment (L₀T₀) to minimum of 402.97 μ in coolant circulation with low temperature feed (L₃T₁). Reduction in average particle size of ground powder with moving from left to right in the graph might be attributed to the fall of temperature inside the grinding chamber. Additionally, lowering the feed temperature made fenugreek seeds more brittle which in turn made them ground to finer particles comparatively.

10.2.2 Turmeric:

10.2.2.1 Moisture content of turmeric rhizomes

The values of moisture content of rhizomes, estimated with the help of Dean and Stark apparatus are shown in the following table (Table 2.9).

	Moistu	Mean	S. D.			
R-1	R-2	R-3	R-4	R-5	% (w.b.)	% (w.b.)
7.924	7.799	7.93	8.024	8.323	8.000	0.176

Table 2.9 Moisture content of cleaned turmeric rhizomes

The mean moisture content of seeds was found to be $8.000 \pm 0.176\%$ (w.b.).

10.2.2.2 Physical properties of turmeric

The mean values obtained for various physical properties of raw turmeric at moisture content of 8.00 % (w.b.) are given in following table (Table 2.10) and are discussed separately below.

Sr. No.	Physical property	Mean ± S. D.
1	Size (Geometric mean diameter) (mm)	20.099 ± 0.169
2	Sphericity	0.365 ± 0.079
3	Bulk density (g/cm ³)	0.558 ± 0.820
4	True density (g/cm ³)	1.345 ± 1.820
5	Porosity (%)	58.51
6	Static angle of repose (°)	36.55 ± 0.13
7	Coefficient of external friction (static) Metal (Galvanized iron) surface	0.252 ± 0.001

Table 2.10 Physical properties of turmeric

Size (Geometric mean diameter)

The mean value for size of turmeric was determined based on values of length, breadth and thickness of 50 randomly selected seeds. The mean value of size in terms of geometric mean diameter was found to be 20.099 ± 0.169 mm.

Sphericity

The mean value of sphericity of 50 randomly selected seeds was found to be 0.365 ± 0.079 .

Bulk density

The mean value of four replication of bulk density of selected turmeric rhizomes was found to be 0.558 ± 0.820 g/cm³.

True density

The mean value of four replication of true density of randomly selected turmeric rhizomes was found to be $1.345 \pm 1.820 \text{ g/cm}^3$.

Porosity

The mean value of four replications of porosity for turmeric was calculated based on mean values of bulk and true density. It was found to be 58.51.

Static angle of repose

The mean value of four replications of angle of repose was found to be $36.55 \pm 0.13^{\circ}$.

Coefficient of external friction (static)

The mean values four replications was found to be 0.252 \pm 0.001 for metal (galvanized iron) surface.

Rupture force of turmeric rhizomes

Compressive force or rupture force of turmeric rhizomes was observed 116.68±8.58 kg.

10.2.2.3 Performance evaluation of low temperature grinding mill

Performance evaluation of low temperature grinding mill was carried out by observing time to grind the material, temperature profile of liquid entering and leaving the grinding chamber along with temperature profile inside the grinding chamber, temperature inside the grinding chamber at the end of grinding operation, temperature of ground product, sieve clogging, milling and machine loss for each treatment combination. In addition to that, temperature of surrounding was noted every time before starting off grinding operation. The mean values of each parameter for all the treatments and the effect of two factors, *viz.* grinding method and feed temperature on all the dependent parameters are shown in following tables (Table 2.11 and 4.4 respectively). Results of this section are discussed separately for each parameter in detail below.

Treatment	Ambient temperature (°C)	Temp. inside grinding chamber at end (°C)	Time to grind the material (min)	Temp. of ground product (°C)	Milling loss (%)	Machine loss (%)
L_0T_0	31.67	33.67	8.08	38.67	11.64	6.92
L_0T_1	32.67	34.33	8.72	37.67	14.44	8.65
L_1T_0	32.33	35.67	8.25	37.50	13.82	9.36
L_1T_1	28.67	34.33	7.48	35.83	14.44	9.28
L_2T_0	28.33	30.67	7.41	34.33	13.67	8.47
L_2T_1	28.67	29.67	7.37	35.00	13.16	6.51
L_3T_0	34.33	17.67	9.23	33.33	11.09	7.34
L_3T_1	33.33	19.00	8.67	32.33	13.36	9.28

 Table 2.11 Mean values of parameters evaluating performance of low temperature grinding mill

Ambient temperature before grinding

Ambient temperature is an important independent parameter which can affect the conditions and results of grinding operation. Ambient temperature, observed with the help of a glass thermometer before each treatment including three. Results showed that the mean value among all the treatments varied from minimum of 28.33°C to maximum of 34.33 °C. For all the treatments which include ambient temperature as feed temperature, the values of feed temperature can be found from these ambient temperature itself for the respective treatments.

Effect	Temperature inside grinding chamber at the end (°C)	Time to grind the material (min)	Temperature of ground product (°C)	Milling loss (%)	Machine loss (%)
	Grindiı	ng method (L)			
Ambient temperature grinding(L_0)	34.00 ^a	8.40	38.17 ^a	13.04	7.78
Ambient temperature water circulation (L_1)	35.00 ^a	7.86	36.67 ^b	14.07	9.32
Chilled water circulation (L ₂)	30.17 ^b	7.39	34.67 ^c	13.42	7.49
Coolant circulation (L ₃)	18.33 ^c	8.78	32.83 ^d	12.25	8.31
S. Em±	0.3632	0.3544	0.25	0.4346	0.458
C. D. at 5%	1.089	NS	0.7495	NS	NS
	Feed ter	mperature (T)	·		·
Ambient temperature feed (T_0)	29.42	8.24	35.96	12.54	8.02
Low temp. feed (T_1)	29.33	7.97	35.21	13.85	8.43
S. Em±	0.2569	0.2506	0.1967	0.3073	0.3239
C. D. at 5%	NS	NS	0.5897	0.9214	NS
	Intera	action (L*T)	· · · · · · · · · · · · · · · · · · ·		·
S. Em±	0.5137	0.5012	0.3536	0.6146	0.6477
C. D. at 5%	NS	NS	1.06	NS	1.9419
C. V%	3.029	10.7067	1.721	8.0673	13.6369

 Table 2.12 Effect of grinding method and feed temperature on parameters evaluating performance of low temperature grinding mill

Temperature profile inside the grinding chamber

The values of temperature of liquid entering and leaving the grinding chamber, temperature of liquid inside the refrigeration tank and temperature inside the grinding chamber at every minute during the whole grinding operation for all the treatments are recorded. The values were observed once the temperature of grinding chamber lowered as possible as and became constant for nearly 15 minutes by circulation of liquid without load (without feed) condition.

Temperature profile inside the grinding chamber for all the treatments are shown graphically below (Fig. 2.21). Fig. 2.21(a) shows the trend of change in temperature for the treatments involving ambient temperature feed while 10.21(b) shows trend for treatments involving low temperature feed.

From fig. 2.21(a), it can be said that the value of temperature inside the grinding chamber stayed all-time high for ambient temperature water circulation grinding treatment whereas all-time low for coolant circulation treatment compared to all other treatments. In case of rise in temperature, treatment involving ambient grinding treatment has lesser rise of temperature (7.34 °C) as there is already initial temperature is high. Even it was reported that continuous circulation of ambient water increases the temperature inside the grinding chamber and hence there was more rise of temperature (9.00 °C) compared to ambient grinding treatment. While treatment involving chilled water circulation, have high rise of temperature (25.67 °C) compared to coolant circulation treatment (18.67 °C). There was considerable gap in the graph between the treatments for which refrigerator remained OFF (ambient grinding and ambient temperature water circulation) and refrigerator remained ON (chilled water and coolant circulation) during the whole grinding operation. For all the treatments, temperature inside the grinding chamber increased rapidly at initiation of grinding, increased moderately in middle and rose even swiftly at the end. Fig. 2.21(b) shows the same trend for treatment involving low temperature feed. The only difference of changing the feed temperature was slight decrease in temperature inside the grinding chamber on the very next minute of feeding in case of low temperature feed. Overall, the initial and final value of temperature inside the grinding chamber for all the treatments are given in following table (Table 2.13).

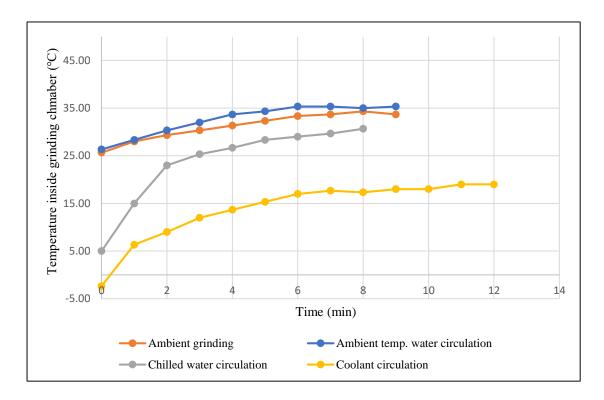


Fig. 2.21(a) Temperature profile of grinding chamber for ambient temperature feed

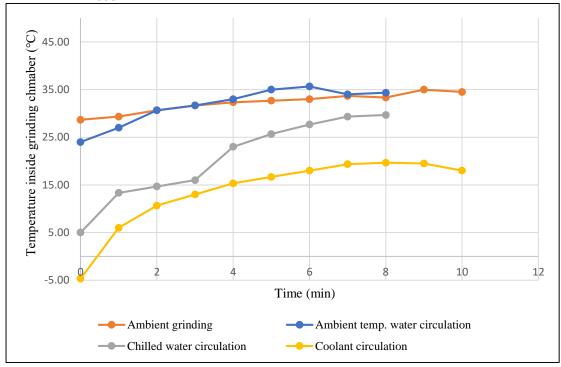


Fig. 2.21(b) Temperature profile of grinding chamber for low temperature feed Fig. 2.21 Temperature profile of grinding chamber for all the treatments

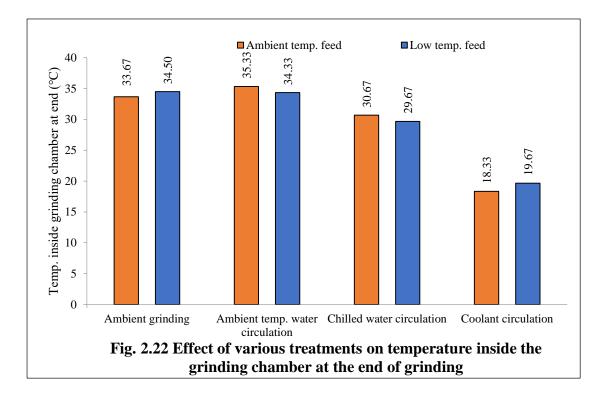
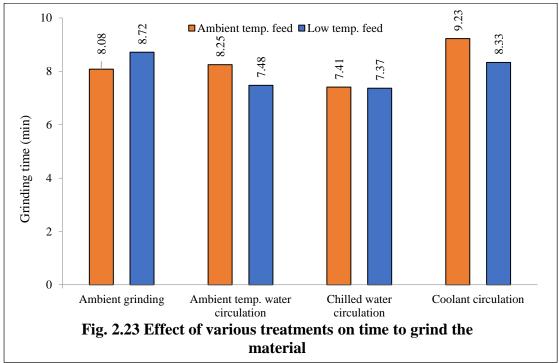

Treatment	Temperature inside grinding chamber (°C)			
	At beginning of grinding	At the end of grinding		
L ₀ T ₀	25.67	33.67		
L_0T_1	28.67	34.50		
L_1T_0	26.33	35.33		
L_1T_1	24	34.33		
L ₂ T ₀	5	30.67		
L_2T_1	5	29.67		
L ₃ T ₀	-2.33	18.33		
L ₃ T ₁	-4.67	19.67		

 Table 2.13 Initial and final value of temperature inside the grinding chamber for all the treatments

Temperature inside the grinding chamber at the end of grinding

From table 2.12, it is clear that grinding method affects significantly on the value of temperature inside the grinding chamber at the end of grinding. The highest temperature (34.50 °C) was found for the grinding method ambient temperature water circulation (L₁). While method L₀, involving ambient grinding was at par with the method L₁. The significantly lowest temperature (18.33 °C) was found for the method having coolant circulation around the grinding chamber (L₃). The effect of feed temperature (at 5% level) on the same parameter was found non-significant (Table 2.12). The value found was 29.33 °C for ambient temperature feed (T₁). The value in case of low temperature feed (T₁) was just at par with that of T₀. In addition to that, the interaction effect of grinding method and feed temperature (L*T) on the value of temperature inside the grinding chamber at the end of grinding was found non-significant.

The mean values for this parameter for all the treatments are graphically presented in the following figure (Fig. 2.22). It varied from 35.33 °C for ambient water circulation grinding with ambient temperature feed to 18.33 °C in coolant circulation with ambient temperature feed (L_3T_0). But fall in temperature becomes substantial with the change in grinding method compared to the change in feed temperature keeping the grinding method same, especially when jumping to chilled water and coolant circulation methods from ambient temperature water circulation. Possibly, resting of considerable amount of time in feed hopper increased the temperature of low temperature feed which in turn diminished its effect to some extent.



From fig. 2.22, it can be concluded that lowering feed temperature as well as circulation of coolant around the grinding chamber positively decreases the final value of temperature inside the grinding chamber. That was caused by continuous absorption of heat generated during grinding operation. Additionally, lowering the temperature of liquid, circulating around the grinding chamber results in appreciable falling of final temperature inside the grinding chamber. That was caused by absorption of more amount of heat generated during grinding operation due to increase in the value of difference in temperature between grinding chamber and circulating liquid around.

Time to grind the material (Grinding time)

From table 2.12, it is clear that effect of grinding method on the value of grinding time was non-significant. The highest time (11.08 min) was found for the grinding method without liquid circulation (L_3). The lowest time (7.39 min) was found for the method having coolant circulation around the grinding chamber (L_2). The effect of feed temperature on the same parameter was also found non-significant (Table 2.12). The value found was 8.24 min for ambient temperature feed (T_0). While value in case of low temperature feed (T_1) was above par with that of T_1 . Additionally, the interaction effect of grinding method and feed temperature (L*T) on the value of time to grind the material was found non-significant.

The mean values for this parameter for all the treatments are graphically displayed in the following figure (Fig. 2.23). The values varied from 9.23 min for coolant circulation with ambient temperature feed (L_3T_0) to 7.37 min for chilled water circulation with low temperature feed (L_2T_1) . From the figure, lowering the feed temperature conclusively lowers the time required for grinding the material except for

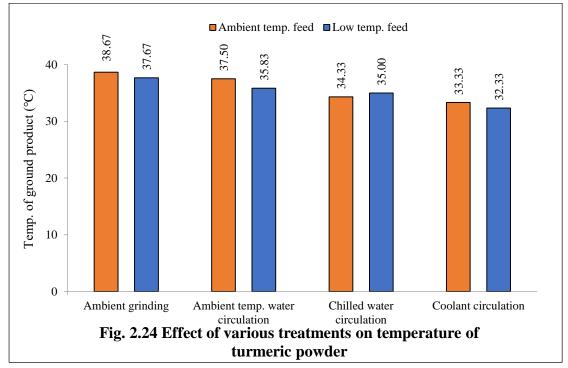
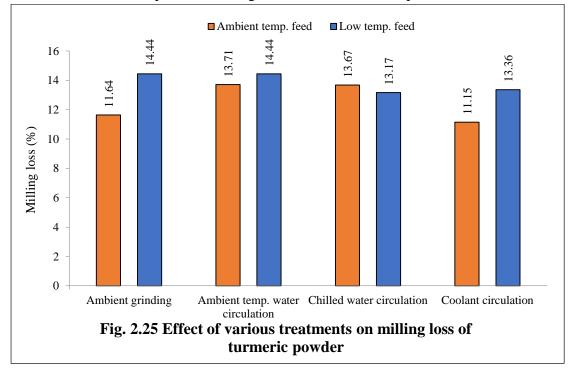

ambient grinding case. That was possibly due to the fact that lowering feed temperature made turmeric rhizome much brittle which in turn made them easy to be ground.

Fig. 2.23 clears that circulation of chilled water decreases the value of grinding time for an ambient temperature feed. There was very less difference in grinding time for chilled water circulation with ambient feed and low temperature feed. The higher difference was found for the coolant circulation with ambient feed and low temperature feed. At very low temperature of grinding may increase the hardness of turmeric rhizome which increase the time for grinding.

Temperature of ground product

From table, it is clear that grinding method affects significantly on the value of temperature of ground powder at the end of grinding. The significantly highest temperature (38.17 °C) was found for the ambient grinding method (L_0). The significantly lowest temperature (32.83 °C) was found for the method involving coolant circulation around the grinding chamber (L_3). The effect of feed temperature (at 5% level) on the same parameter was also found significant (Table 2.12). The significantly highest value 35.96 °C was found for ambient temperature feed (T_0). Besides that, the interaction effect of grinding method and feed temperature (L^*T) on the value of temperature of ground product was also found significant.

The mean values for the same parameter for all the treatments are graphically presented in the following figure (Fig. 2.24). Figure shows that temperature of ground product decreases when moving from left to right *i.e.* treatments involving ambient grinding to ambient water, chilled water and coolant circulation treatments. The value varied from 38.67 °C for ambient grinding treatment (L_0T_0) to 32.33 °C in coolant circulation with low temperature feed (L_3T_1). But fall in temperature becomes

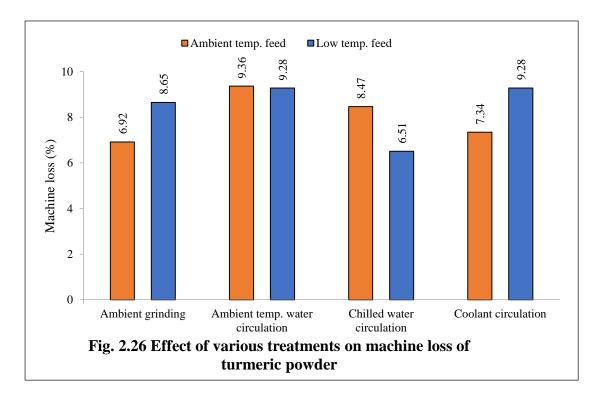

pronounced with the change in grinding method compared to the change in feed temperature keeping the grinding method same.

From fig. 2.24, it can be concluded that lowering feed temperature as well as circulating liquid (and lowering the temperature of circulating liquid) around the grinding chamber positively decreases the value of temperature of ground product. That was caused by reduction in the value of temperature inside the grinding chamber at the end of grinding due to the continuous absorption of heat generated during grinding operation.

Milling loss

From table, it is clear that effect of grinding method on the value of milling loss at 5% level is non-significant. While the effect of feed temperature on the same parameter was found significant. The significantly high value (13.85%) was found for low temperature feed (T_1). While significantly lowest value in case of ambient temperature feed (T_0) was 13.85%. Additionally, the interaction effect of grinding method and feed temperature (L*T) on the value of per cent milling loss was found non-significant.

The mean values for this parameter for all the treatments are graphically shown in the following figure (Fig. 2.25). The values did not vary to a considerable extent while changing grinding method, keeping feed temperature same. It varied from 11.15% to 13.71% for ambient temperature feed and 13.17 to 14.44% for low temperature feed among all grinding methods. While from the figure, lowering the feed temperature conclusively increases the value of per cent milling loss. That was attributed to the fact that lowering feed temperature made turmeric rhizomes more brittle which in turn made them ground to finer particles comparatively. The formation



of finer particles could easily be lost in the form of dust particles. That ultimately increased the value of per cent milling loss in case of low temperature feed.

Machine loss

Table shows that effect of grinding method as well as effect of feed temperature on the value of machine loss at 5% level is non-significant. The value found was 8.43% for low temperature feed (T_1). While value in case of ambient temperature feed (T_0) was 8.02%. Additionally, the interaction effect of grinding method and feed temperature (L*T) on the value of per cent machine loss was found significant.

The mean values for this parameter for all the treatments are graphically shown in the following figure (Fig. 2.26). The values did not vary to a considerable extent while changing grinding method, keeping feed temperature same. It varied from 6.92 to 9.35% for ambient temperature feed and 6.51 to 9.28% for low temperature feed among all grinding methods. While from the figure, lowering the feed temperature conclusively increases the value of per cent machine loss. This is due to the increase in milling loss in the form of dust in case of low temperature feed. Particles lost in the form of dust stuck to the internal surfaces of product outlet area which in turn increased the value of per cent machine loss.

10.2.2.4 Biochemical parameters of turmeric powder

The values obtained for various biochemical parameters of ground turmeric powder obtained through different treatments are given in table 2.13 and are discussed separately below.

	Biochemical parameters						
Treatment	Moisture content (%w.b.)	Total carbo- hydrate (%)	Crude fibre (%)	True protein (%)	Total oil (%)	Total ash (%)	Volatile oil yield (%)
L_0T_0	6.49	60.90	5.91	6.01	6.31	5.54	2.87
L_0T_1	6.83	61.31	5.79	6.23	6.38	5.29	2.97
L_1T_0	6.33	60.33	5.97	6.36	6.33	5.47	3.20
L_1T_1	6.50	60.98	6.27	6.49	6.43	5.47	3.30
L_2T_0	6.08	61.34	6.11	6.55	7.03	5.70	3.53
L_2T_1	6.24	62.52	6.30	6.93	7.21	5.36	3.67
L_3T_0	5.99	61.95	5.93	6.89	7.09	5.39	3.83
L_3T_1	6.07	62.28	6.11	7.47	7.34	5.39	4.00

Table 2.14 Mean value of biochemical parameters of turmeric powder obtained
through various treatments.

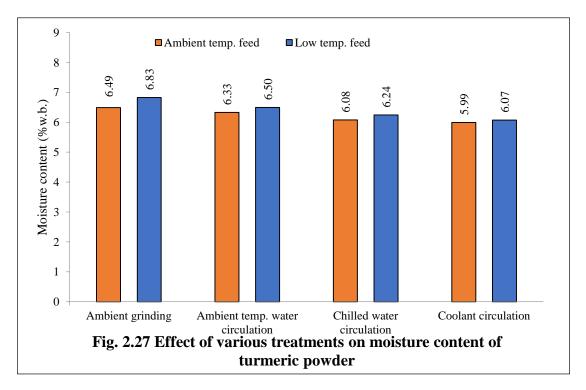
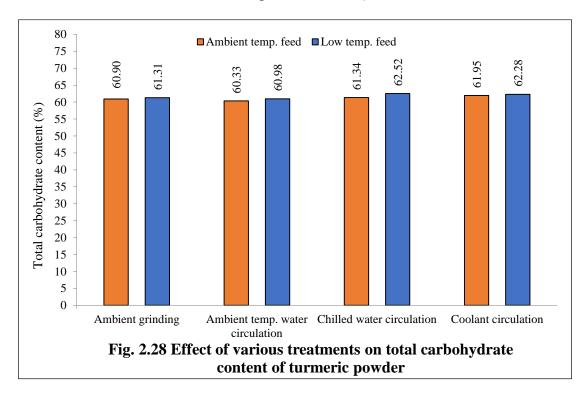

Effect	Moisture content (%w.b.)	Total carbo- hydrate (%)	Crude fibre (%)	True protein (%)	Total oil (%)	Total ash (%)	Volatile oil yield (%)
	Grine	ling method (L)					
Without liquid circulation (L ₀)	6.66 ^b	61.10	5.85	6.12 ^a	6.35	5.41	2.92
Ambient temperature water circulation (L_1)	6.41 ^{ab}	60.66	6.12	6.43 ^{ab}	6.38	5.47	3.25
Chilled water circulation (L ₂)	6.16 ^a	61.93	6.20	6.74 ^{bc}	7.12	5.53	3.60
Coolant circulation (L ₃)	6.03 ^a	62.11	6.02	7.18 ^c	7.22	5.39	3.92
S. Em±	0.1456	0.81	0.2025	0.1853	0.1737	0.1225	0.0514
C. D. at 5%	0.4366	NS	NS	0.5556	0.5209	NS	0.1541
	Feed	l temperature (T					
Ambient temperature feed (T_0)	6.22	61.13	5.98	6.45	6.69	5.52	3.36
Low temp. feed (T_1)	6.41	61.77	6.12	6.78	6.84	5.38	3.48
S. Em±	0.1030	0.5727	0.1432	0.1310	0.1228	0.0866	0.0363
C. D. at 5%	NS	NS	NS	NS	NS	NS	0.109
	Inte	eraction (L*T)					
S. Em±	0.2059	1.1455	0.2863	0.2621	0.2457	0.1733	0.0727
C. D. at 5%	NS	NS	NS	NS	NS	NS	NS
C. V%	5.6477	3.2287	8.2001	6.8597	6.2894	5.507	3.6808

 Table 2.15 Effect of grinding method and feed temperature on biochemical parameters of turmeric powder

Moisture content

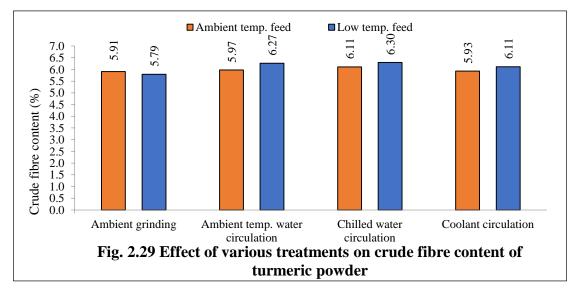
From the table 2.15, it can be observed that grinding method affects significantly on the value of moisture content of ground product at 5% level of significance. The highest value (6.66%) was found for the grinding method ambient grinding (L_0) while method involving coolant circulation around the grinding chamber (L_3) exhibited to retain lower percentages of moisture (6.03%). The effect of feed temperature on the value of moisture content was found non-significant (at 5% level). The values found were 6.22 and 6.41% for ambient temperature and low temperature feed, respectively. In addition to individual effects, the interaction effect of grinding method and feed temperature (L*T) on the same parameter was found non-significant.


The mean values of moisture content of ground powder for all the treatments are graphically presented in the following figure (Fig. 2.27). Figure reveals that the value of moisture content of ground powder decreases when moving from left to right *i.e.* treatments involving ambient grinding to ambient, chilled water and coolant circulation treatments. Values varied from maximum of 6.50% for ambient grinding with ambient water circulation and low temperature feed (L_1T_1) to minimum of 6.07% in coolant circulation with low temperature feed (L_3T_1) . Increase in moisture content of ground powder for low temperature feed with moving from ambient grinding to coolant circulation might be attributed to the condensation of moisture at low temperature. Inversely, for ambient temperature feed moisture content decreases from ambient grinding to coolant circulation. Further, lower temperature of ground powder might decrease the loss of moisture in surrounding by evaporation. However, decrease in the value of moisture content in ground powder compared to moisture of turmeric rhizome (8.00%) for all the treatments was observed. That might be due to the loss of moisture at higher temperature generated during grinding operation.

Total carbohydrate content

The table clears that grinding method affects non-significantly on the value of total carbohydrate of ground product at 5% level of significance. The lowest value (60.10%) was found for the grinding method with ambient water (L_0) while method involving coolant circulation around the grinding chamber (L_3) found to retain higher percentages of carbohydrate (62.11%). The effect of feed temperature on the value of total carbohydrate content was also found statistically non-significant at the same level of significance (Table 2.14). The values found were 61.13 and 61.77% for ambient temperature and low temperature feed, respectively. Further, the interaction effect of grinding method and feed temperature (L*T) on the value of total carbohydrate was found non-significant.

The mean values of total carbohydrate content of ground powder for all the treatments are graphically displayed in the following figure (Fig. 2.28). Figure reveals that the value of total carbohydrate in ground powder decreases from ambient grinding to ambient water circulation for ambient feed then continuously increases when moving from treatments involving ambient water to chilled water and coolant circulation treatments. Values varied from minimum of 60.33% for control treatment (L_1T_0) to maximum of 62.52% in chilled water with low temperature feed (L_3T_1).

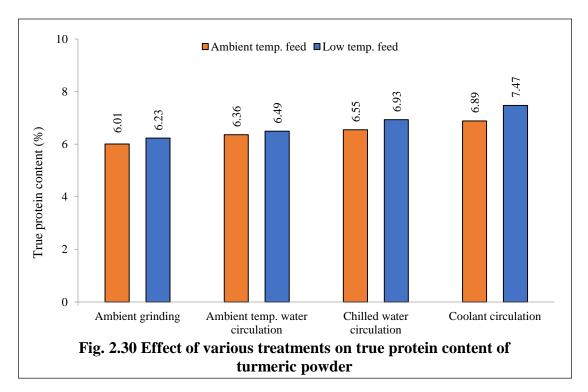


Crude fibre content

The table clears that grinding method affects non-significantly on the value of crude fibre in ground product at 5% level of significance. The lowest value (5.85%) was found for the grinding method ambient grinding (L_0). On the other hand, method involving chilled water circulation around the grinding chamber (L_2) found to have higher percentages of crude fibre (6.20%). Besides grinding method, the effect of feed

temperature on the same parameter was also found statistically non-significant at the same level of significance. The values found were 5.98 and 6.12% for ambient temperature and low temperature feed, respectively. Further, the interaction effect of grinding method and feed temperature (L*T) on the value of crude fibre content was found non-significant.

The mean values of crude fibre of ground powder for all the treatments are graphically demonstrated in the following figure (Fig. 2.29). Figure indicates that the value of crude fibre in ground powder increases when moving from treatments involving ambient grinding to chilled water circulation treatments in the both the case ambient temperature feed and low temperature feed. The mean value for the treatment coolant circulation again the crude fibre content decreases but it is more than ambient grinding treatment. The mean values varied from minimum of 5.91% for ambient grinding treatment (L_0T_0) to maximum of 6.27% in chilled water circulation with ambient temperature feed (L_2T_1) . Increase in crude fibre content in ground powder with moving from left to right in the graph might be attributed to decrease in elevation of temperature during grinding operation. But lowering the more temperature crude fibre decreases. Higher temperature developed during grinding operation might cause the conversion of insoluble dietary fibre to soluble dietary fibre which in turn perhaps decreased the percentages of crude fibre in ground powder, as crude fibre is composed of insoluble cellulose and lignin. Rise in temperature breaks the weak bonds between polysaccharide chains and split glycosidic linkages in the dietary fibre polysaccharides. So, the architecture of the fibre matrix may be modified and insoluble fibre changes to soluble dietary fibre. This may be the case for more lowering temperature.

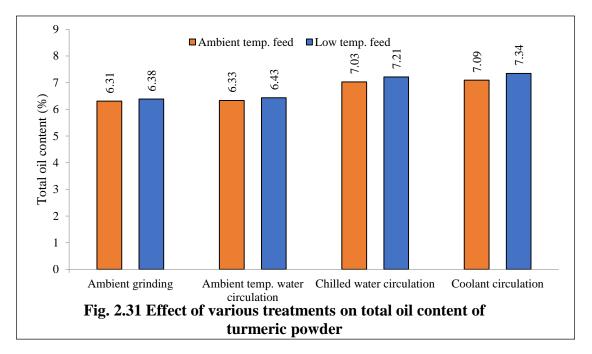


True protein content

Effect of grinding method on the value of true protein content of ground powder was found significant at 5% level of significance (Table 2.14). The lowest value (6.12%) was found for the grinding treatment ambient grinding (L_0) while method involving coolant circulation around the grinding chamber (L_3) found to produce powder having higher percentages of true protein (7.18%). The effect of feed temperature on the value of

true protein was found statistically non-significant at 5% level of significance. The value found for low temperature feed (6.45%) and that of ambient temperature feed (6.78%). Additionally, the interaction effect of grinding method and feed temperature (L*T) on the value of true protein content was found non-significant at the same level of significance.

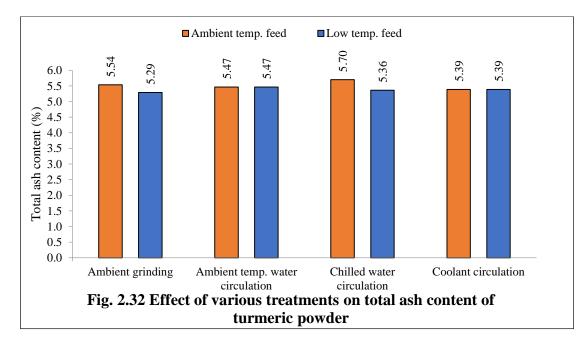
The mean values of true protein of ground powder for all the treatments are graphically displayed in the following figure (Fig. 2.30). Figure indicates that the value of true protein of ground powder increases when moving from treatments involving ambient grinding to ambient, chilled water and coolant circulation treatments. Values ranged from minimum of 6.01% for ambient grinding treatment (L_0T_0) to maximum of 7.47% in coolant circulation with low temperature feed (L_3T_1). Increase in true protein content of ground powder with moving from left to right in the graph might be attributed to the decrease in elevation of temperature during grinding operation. As higher temperature causes protein denaturation, it decreases the percentages of true protein.



Total oil content

From the table, it can be seen that grinding method affects significantly on the value of total oil content of ground product at 5% level of significance. The lowest value (6.35%) was found for the grinding method without liquid circulation (L_0). While the method incorporating coolant circulation (L_3) exhibited to produce powder containing comparatively higher percentages of fixed oil (7.22%). Additionally, the value observed in case of chilled water circulation method (7.12%) was at par with L_3 . Similarly, the ambient grinding treatment and ambient water circulation resulted at par for total oil content. The effect of feed temperature (at 5% level) on the same parameter was found non-significant. The values found were 6.69 and 6.84% for ambient temperature and low temperature feed, respectively. In addition to individual effects, the interaction effect of

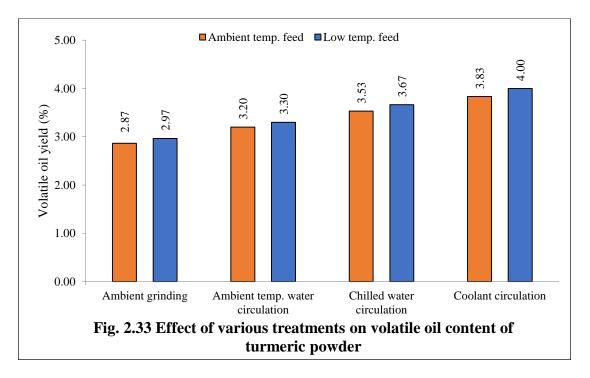
grinding method and feed temperature (L*T) on the value of total oil content in ground powder was found non-significant at the same level of significance.


The mean values of total oil of ground powder for all the treatments are graphically presented in the following figure (Fig. 2.31). Figure shows that the value of total oil in ground powder increases when moving from left to right *i.e.* treatments involving ambient grinding to ambient, chilled water and coolant circulation treatments. Values varied from minimum of 6.31% for ambient grinding treatment (L_0T_0) to maximum of 7.34% in coolant circulation with low temperature feed (L_3T_1). Increase in oil percentages in ground powder with moving from ambient grinding to coolant circulation might be attributed to the reduction in the degree of melting of fat present in the rhizomes. Moving from left to right in the graph decreased the value of temperature inside the chamber at the end of grinding operation which in turn decreased the extent of melting and sticking of fat on grinding surfaces and sieve. That caused increase in the oil percentages in ground powder. While higher temperature developed during grinding operation caused reduction in the value of total oil in ambient grinding treatment.

Total ash content

From the table, it can be concluded that grinding method and feed temperature individually affected non-significantly on the value of total ash content of ground product at 5% level of significance. For the grinding method, the lowest value (5.39%) was found for the method involving coolant circulation around the grinding chamber (L_3) and highest in case of chilled water circulation (5.53%). Besides that, the interaction effect of grinding method and feed temperature (L*T) on the same parameter was also found non-significant at the same level of significance.

The mean values of total ash of ground powder for all the treatments are graphically shown in the following figure (Fig. 2.32). Figure indicates that the value of total ash in ground powder decreases when moving from treatments involving ambient water circulation while again it increases for chilled water circulation and again decreases for coolant circulation treatment. Values ranged from minimum of 5.29% for control treatment (L_0T_1) to maximum of 5.70% in chilled water circulation with ambient temperature feed (L_3T_1) . Decrease or no change in total ash content of ground powder was found for low temperature feed as compared ambient temperature feed for all grinding treatment. Increased moisture of low temperature feed caused decrease in the solid percentages of ground powder which in turn caused reduction in the value of ash content. So, grinding method did not affect the value of total ash of the ground powder directly, instead variation in the moisture due to different grinding methods engendered variation in the value of ash content.



Volatile oil content

From the table, it can be concluded that grinding method affects significantly on the value of volatile oil content of ground product at 5% level of significance. The lowest value (2.92%) was found for the grinding method without liquid circulation (L_0) while the highest (3.92%) for the method involving coolant circulation around the grinding chamber (L_3). The effect of feed temperature on the value of volatile oil per cent was also found statistically significant at 5% level of significance. The value found was 3.36% and 3.48% for both, ambient and low temperature feed respectively. Besides that, the interaction effect of grinding method and feed temperature (L*T) on the same parameter was found non-significant at the same level of significance.

The mean values of volatile oil content of ground powder for all the treatments are graphically displayed in the following figure (Fig. 2.33). Figure shows that the value of volatile oil in ground powder increases when moving from treatments involving ambient grinding to ambient, chilled water and coolant circulation treatments. Values ranged from minimum of 2.87 % for control treatment (L_0T_0) to maximum of 4.00 % in coolant circulation with low temperature feed (L_3T_1). Increase in volatile oil yield of ground powder with moving from left to right in the graph may be credited to the fall of

temperature inside the grinding chamber. As higher temperature developed during ambient grinding process causes loss of volatile oil. Powder obtained through ambient grinding treatment showed the lowest percentages of volatile oil.

Volatile metabolites

Volatile components present in ground powder of turmeric rhizomes were identified using GC-MS QTOF. The chromatograms obtained in the analysis of extract of ground powder, obtained through all the treatments are shown in figures. There were 35 compounds present in the extract raw rhizome and treatment L_0T_0 , while in case of treatments L_0T_1 and L_2T_0 there were 40 compounds, in treatment L_1T_0 there were 49 compounds, in treatments L_1T_1 and L_3T_1 , there were 31 compounds, in treatment L_2T_1 30 compounds, in treatment L_3T_0 there was 34 compounds.

The essential oil of turmeric is a mixture of ~75 compounds, some of them are identified and some not. Turmerone is principle flavouring compound of turmeric (Curcuma longa L.). The turmerone in harvested rhizome accounted for almost 90% of the oil composition. It has been reported that the major compounds found in turmeric oil, up to 50-60%, are the sesquiterpene ketones, β -, and ar-turmerone. In all treatments turmerone was found except coolant circulation with both ambient temperature and low temperature feed. Maximum content of turmerone was found in L₂T₀ followed by L₁T₀ and L₀T₁.

11. Financial Implications (Rs. in Lakhs)

- 11.1 Expenditure on
 - (a) Manpower : Rs. 25.50 lakh
 - (b) Research/Recurring Contingencies: Rs. 1.50 lakh
 - (c) Non-Recurring Cost (Including cost of equipment) : Rs 35000/-
 - (d) Any Other Expenditure Incurred : -Nil-

11.2 Total Expenditure : 27.35 lakh

Cumulative Output

- a. Special attainments/innovations : Reduction of post harvest losses
- b. List of Publications (one copy each to be submitted if not already submitted)
 - Research papers: Shelake P. S., M. N. Dabhi. 2019. Development of cooling system assisted grinding mechanism for spices. Journal of Food Process Engineering. 42(8):DOI:101111/jfpe.13288.Reports/Manuals: -Nil-

-Nil-

- ii. Working and Concept Papers: -Nil-
- iii. Popular articles:
- iv. Books/Book Chapters: -Nil-
- v. Extension Bulletins: -Nil-
- c. Intellectual Property Generation

(Patents - filed/obtained; Copyrights- filed/obtained; Designsfiled/obtained; Registration details of variety/germplasm/accession if any): -Nil-

- d. Presentation in Workshop/Seminars/Symposia/Conferences (relevant to the project in which scientists have participated):
- e. Details of technology developed : Crop-based

Low temperature grinding machine was developed for 20-25 kg per hour capacity of spices.

(Crop-based; Animal-based, including vaccines; Biological – biofertilizer, biopesticide, etc; IT based – database, software; Any other – please specify)

- f. Trainings/demonstrations organized : -Nil-
- g. Training received: -Nil-
- h. Any other relevant information: -Nil-
- (a) Extent of achievement of objectives and outputs earmarked as per RPP-I

Objective wise	Activity	Envisage	Outpu	Extent of
		d output	t	Achievement
		of	achie	(%)
		monitora	ved	
		ble		
		target(s)		
1. Development of low	1. March - Dec 2019-	Achieved	Fully	100%
temperature grinding	Development of		match	
machine	low temperature		ed	
	grinding machine			
2. Grinding of spices	2. Jan – Mar 2020	Grinding	Achie	100%
(Chilly, Turmeric) at	Grinding of spices.	of	ved	
low temperature		fenugreek		
		is		
		completed		
		by Sept.		
		2020 and		

	3. April-Dec 2020: Biochemical analysis of	for turmeric it is completed by Nov. 2020. Achieved	Fully match	100%
volatile compound of spice powder.	ground powder		ed	

(b) Reasons of shortfall, if any: Due to pandemic covid 19 the grinding operation was late and in odd season.

Efforts made for commercialization/technology transfer:-

(a) How the output is proposed to be utilized?

1. The outcome of this project helps to retain biochemical metabolites in ground powder.

(b) How it will help in knowledge creation?

Low temperature grinding retain the important volatile compounds as compared to ambient temperature grinding.

Expected benefits and economic impact(if any)

The ground powder of Fenugreek seed and turmeric will contain important volatile compounds

Specify whether the project requires submission of RPP-IV for up scaling of research output. -Nil-

Future line of research work/other identifiable problems

1. The varietal research on curing system is needed.

Details on the research data (registers and records) generated out of the project deposited with the institute for future use

As in point 10.

Signature of PI, CC-PI(s), all Co-PIs

(M. N. Dabhi)	(P. R. Davara)	(H. R. Sojaliya)
Principal Investigator	Co-PI	Co-PI

Signature of Head of Division

Observations of PME Cell based on Evaluation of Research Project after Completion

Signature (with comments if any along with rating of the project in the scale of 1 to 10 on the overall quality of the work) of JD (R)/ Director

ANNEXURE - VIII INDIAN COUNCIL OF AGRICULTURAL RESEARCH (For Guidelines Refer ANNEXURE – XI(H)) <u>PROFORMA FOR RESEARCH PERFORMANCE EVALUATION OF</u> <u>INDIVIDUAL SCIENTIST</u>

- 1. Institute Project Code : PH/JU/2019/01
- 2. Evaluation by PI on the contribution of the team in the project including self

S. No.	Name	Status in the project (PI/CC-PI/Co-PI)	Rating in the scale of 1 to 10
1	Dr. M. N. Dabhi	PI	9

3. Signature of PI :

M. N. Dabhi Principal Investigator

ANNEXURE - VIII INDIAN COUNCIL OF AGRICULTURAL RESEARCH (For Guidelines Refer ANNEXURE – XI(H)) <u>PROFORMA FOR RESEARCH PERFORMANCE EVALUATION OF</u> <u>INDIVIDUAL SCIENTIST</u>

- 1. Institute Project Code: PH/JU/2019/01
- 2. Evaluation by PI on the contribution of the team in the project including self

S. No.	Name	Status in the project (PI/CC-PI/Co-PI)	Rating in the scale of 1 to 10
1	Dr. P. R. Davara	Co-PI	9

3. Signature of PI :

M. N. Dabhi Principal Investigator

ANNEXURE - VIII INDIAN COUNCIL OF AGRICULTURAL RESEARCH (For Guidelines Refer ANNEXURE – XI(H)) <u>PROFORMA FOR RESEARCH PERFORMANCE EVALUATION OF</u> <u>INDIVIDUAL SCIENTIST</u>

1. Institute Project Code: PH/JU/2019/01

2. Evaluation by PI on the contribution of the team in the project including self

S. No.	Name	Status in the project (PI/CC-PI/Co-PI)	Rating in the scale of 1 to 10
1	Er. H. P. Gajera	Co-PI	9

3. Signature of PI :

M. N. Dabhi Principal Investigator

INVESTIGATION – 3

INDIAN COUNCIL OF AGRICULTURAL RESEARCH RESEARCH PROJECT PROFORMA FOR MONITORING ANNUAL PROGRESS (RPP- II)

(Refer for Guidelines ANNEXURE-XI (E))

- 1. Institute Project Code : PH/JU/2018/02
- 2. Project Title : Design and development of grain treater for enzymatic pre-treatment to pigeon pea grains.
- 3. Reporting Period : 01-03-2018 to 31-12-2019
- 4. Project Duration: Date of Start –01-03-2018 LikelyDate of Completion– 31-03-2020
- 5. Project Team (Name(s) and designation of PI, CC-PI and all project Co-PIs, (with time spent for the project) if any additions/deletions

S.	Name, designation and institute	Status	Time	Work components to be
No.		in the	to be	assigned to individual
		project	spent	scientist
		(PI/CC-	(%)	
		PI/		
		Co-PI)		
1.	Dr. P. R. Davara,	PI	75%	1. Designing of grain treater
	Assistant Research Engineer,			2. Development and
	AICRP on PHET,			fabrication of grain
	Dept.of Processing and Food			treater
	Engg.,			3. Laboratory experiments
	College of Agril. Engg. &			4. Modifications in the grain
	Tech., Junagadh Agril.			treater
	University, Junagadh			5. Data collection and its
				analysis
				6. Report writing
2.	Dr. M. N. Dabhi,	Co-PI	25%	To assist the PI in all above
	Research Engineer,			aspects
	AICRP on PHET,			
	Dept.of Processing and Food			
	Engg.,			
	College of Agril. Engg. &			
	Tech., Junagadh Agril.			
	University, Junagadh			

6. (a) Activities and outputs earmarked for the year (as per activities schedule given in RPP-I)

RPP-I)	A _ 4 : : 4	C all and last	0/ - f	0/
Objective wise	Activity	Scientist	% of	%
		responsible	activity	achieved
			envisaged	as
			to be	targeted
			completed	
			as per	
			RPP-I	
1.To design and	1. Review collection	Dr. P. R.	100%	100%
develop the grain		Davara		
treater for	2. Designing of grain	Dr. P. R.	100%	100%
enzymatic pre-	treater	Davara		
treatment to		Dr. M. N.		
pigeon pea grains		Dabhi		
	3. Fabrication of drum	Dr. P. R.	100%	100%
		Davara		
		Dr. M. N.		
		Dabhi		
	4. Fabrication of gate	Dr. P. R.	100%	100%
	for loading and	Davara		
	unloading	Dr. M. N.		
	C	Dabhi		
	5. Fabrication of stand	Dr. P. R.	100%	100%
	for grain treater	Davara		
		Dr. M. N.		
		Dabhi		
	6. Fabrication of side	Dr. P. R.	100%	100%
	gates is completed	Davara		
	8	Dr. M. N.		
		Dabhi		
	7. Fitting of flights	Dr. P. R.	100%	100%
	inside the drum	Davara	10070	10070
		Dr. M. N.		
		Dabhi		
	8. Fitting of rollers to	Dr. P. R.	100%	100%
	support the drum	Davara	100/0	100/0
		Davara Dr. M. N.		
		Di. M. N. Dabhi		
	0 Fitting of control	Dr. P. R.	100%	100%
	9. Fitting of centre		100%	100%
	shaft assembly	Davara		
		Dr. M. N.		
		Dabhi		

	10. Fitting of spray	Dr. P. R.	100%	100%
	nozzles inside the	Di. F. K. Davara	10070	10070
	drum for spraying of	Davara Dr. M. N.		
	enzyme solution	Dabhi		
	11. Fitting of heating	Dr. P. R.	100%	100%
	assembly (heater and	Di. i . K. Davara	100%	10070
	temperature sensor)	Davara Dr. M. N.		
	inside the drum	Di. Wi. IV. Dabhi		
	12. Fitting of electric	Dr. P. R.	100%	100%
	motor and driving	DI. F. K. Davara	100%	100%
	mechanism	Davara Dr. M. N.		
	mechanism			
	13. Auto on-off	Dabhi	1000/	100%
		Dr. P. R.	100%	100%
	system for heater for	Davara		
	temperature control	Dr. M. N.		
		Dabhi	1000/	1000/
	14. Fitting of Variable	Dr. P. R.	100%	100%
	speed drive (VSD) to	Davara		
	adjust the rpm of drum	Dr. M. N.		
		Dabhi	1000/	1000/
	15. Fitting of spray	Dr. P. R.	100%	100%
	pump along with the	Davara		
	spray nozzle	Dr. M. N.		
		Dabhi		
2. To evaluate the	To test the developed	Dr. P. R.	100%	50%
performance of	machine for treating	Davara		
developed grain	the pigeon pea grains	Dr. M. N.		
treater	with enzyme solution	Dabhi		
3. To study the	To study the	Dr. P. R.	100%	50%
effect of different	feasibility of the	Davara		
machine	machine for effective	Dr. M. N.		
parameters on	enzyme incubation	Dabhi		
enzyme incubation				
efficacy				
4. To optimize the	Different machine	Dr. P. R.	100%	0%
machine	parameters, viz. Filled	Davara		
parameters for	volume and drum	Dr. M. N.		
maximizing	speed are to be	Dabhi		
enzyme incubation	optimized for			
efficacy on pigeon	maximizing the			
pea grains	enzyme incubation			
	efficacy on pigeon pea			
	grains			

5. To estimate the	Total cost of the	Dr. P. R.	100%	0%
cost of developed	machine is to be	Davara		
machine	derived considering all	Dr. M. N.		
	the expenditure	Dabhi		
	incurred during			
	development of the			
	machine			

(b) If shortfall/addition, reasons for the same and how to catch up with the intended activities

7. Annual Progress Report (research results and achievements in bullets)

<u>Objectives</u>

- 4. To design and develop the grain treater for enzymatic pre-treatment to pigeon pea grains.
- 5. To evaluate the performance of developed grain treater.
- 6. To study the effect of different machine parameters on enzyme incubation efficacy.
- 7. To optimize the machine parameters for maximizing enzyme incubation efficacy on pigeon pea grains.
- 8. To estimate the cost of developed machine.

➤ <u>Justification :</u>

Pigeon pea (*Cajanus cajan* L.) is one of the important pulse crops of India contributing 20.87 % to the total production of all pulses. India accounts for 90 % of the total world production of pigeon pea (Goyal *et al.*, 2008). It is mostly consumed after dehulling in the form of dhal (decorticated split cotyledon). Pigeon pea is mainly consumed as dhal because it takes less time to cook and has acceptable appearance, texture, palatability, digestibility, and overall nutritional quality. The pigeon pea grain is considered as most difficult for dehulling as compared to other pulses owing to its seed coat which is more firmly attached with the cotyledons through a layer of gum and mucilage (Rout *et al.*, 2007). Due to the presence of gummy layer and hard seed coat, it is difficult to dehull.

Pre-milling treatments are generally employed to loosen the seed coat to remove husk without losing any edible portion. There are many milling methods like wet milling, dry milling, CFTRI method, Pantnagar process, CIAE method and IIPR method developed for pigeon pea milling. There are various pre milling treatments, with respect to different milling methods, carried out before dehulling for loosening of seed coat of pigeon pea grain. All these mentioned treatments are time consuming, require almost 4 to 7 days for the complete milling of pigeon pea. But, all these pre-treatments do not permit easy removal of seed coat during the subsequent processing operation of pigeon pea milling. Moreover, these pre-treatments lead to higher processing cost, longer processing time and labour consuming for pigeon pea milling (Patel *et al.*, 2001). Enzymatic pre-treatment to pigeon pea can significantly reduce the processing time and increase the husk removal (Deshpande *et al.*, 2007; Sreerama

et al., 2009). The enzymatic process as reported by Sangani *et al.*, (2014) involves incubation of enzyme (xylanse:pectinase:cellulase – 2:1:1) treated grains at 48.5 °C temperature for 8.69 h followed by drying and dehulling. This process resulted the increase in dehulling efficiency of enzyme treated pigeon pea grain as compared to oil treated grains. Continuous mixing of grains at uniform temperature till the end of process is the basic requirement for better efficacy of incubation. Further, incubation time and temperatures varies with variety of pigeon pea (Anon., 2017). No any machine or equipment with such facilities is available to give the enzymatic pretreatment to the pigeon pea. Therefore, the research work has undertaken to develop the grain treater for enzymatic pre-treatment to pigeon pea grains on large scale.

➤ Status (review) :

Saxena *et al.* (1993) used food grade mixed activity enzymes (i.e. xylanase and cellulase) as husk loosening agent. He reported a maximum hulling efficiency of 88.93 % at an enzyme concentration of 0.08 g protein per 260 g pigeon pea grain. Grains were treated with the enzyme and allowed to incubate. During this period of incubation, enzymatic hydrolysis took place which brought about the biodegradation of complex molecules of the grain. The complex gums were degraded which resulted in easy dehusking. It established that a lesser force was required to bring about the dehusking of enzyme treated grain. The action of enzyme also disturbed the microstructure of the grain affecting its strength. They further reported an increase in the protein digestibility and 37.03 % reduction in cooking time. Further, this dhal was reported to cause less gastritis due to fermentation which broke down the polysaccharides responsible for causing gastritis in many people.

Zambre (1994) reported a decrease in gum content after enzyme treatment. The protein digestibility of the treated dhal was more than that of untreated dhal. He also reported that enzyme treatment caused grain to split at a lesser force and deformation. This was due to change in microstructure which affected the strength of the grain.

Deshpande (2003) treated 60 kg pigeon pea grains with 4 % soy oil and 4 % CIRCOT enzyme. The samples treated with soy oil and enzymes were mixed thoroughly to achieve uniform application of enzyme to the grains. The treated grains were than pitted. These samples were then soaked in water for varying duration, i.e., 45, 60, 75 and 90 minutes followed by drying to 10 % moisture content. The results indicated the dhal recovery in the range of 81.11 to 84.58 % for 75 minutes subsequent soaking compared to other soaking treatments.

Technical programme

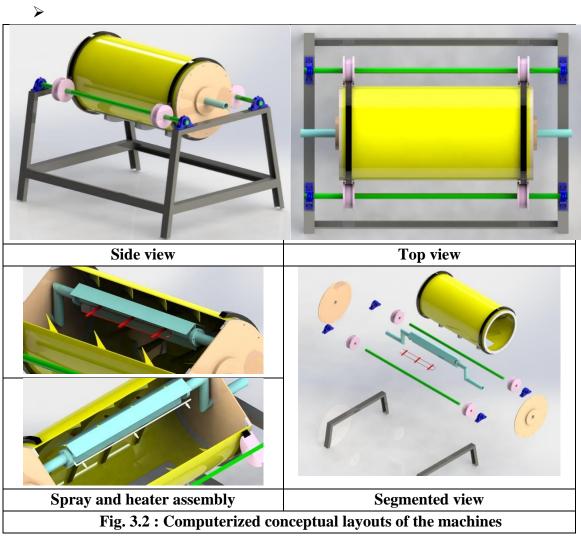
Machine parts :

- 1. Rotating drum with internal flights
- 2. Atomizers for water spray
- 3. Heating accessories (heating elements and thermocouple)
- 4. Airtight discharge gate
- 5. Drum speed regulator

Machine features :

- 1. Internal mixing flights create a gentle, four-way mixing action that tumbles, folds and turns the material.
- 2. Openable air tight gate fitted at the surface of drum makes easy discharge of grains after treatment.
- 3. Hollow pipe act as a shaft as well as facilitate the fitting of atomizers and heating accessories to create and maintain the internal condition for enzyme incubation.
- 4. The consistent and efficient flow pattern of grains assists in creation of ideal conditions for uniform application of water and exposure to heat for achieving homogeneous treatment.
- 5. Speed regulator assists to adjust the speed of drum.


Experimental design :Response Surface Methodology : CCRD (2 factors)


Sr.	Parameters	Code		Co	ded leve	els	
No.	rarameters	Coue	-2	-1	0	+1	+2
1	Drum speed (rpm)	X_1	5	7.5	10	12.5	15
2	Drum occupied volume (%)	X_2	25	28.75	32.5	36.25	40

Independent parameters :

Treatment combinations :

Treatment	Coded t variables		Uncoded variables			
No.	X 1	\mathbf{X}_2	Drum speed (rpm)	Drum occupied volume (%)		
1	-1	-1	7.5	28.75		
2	1	-1	12.5	28.75		
3	-1	1	7.5	36.25		
4	1	1	12.5	36.25		
5	-2	0	5	32.5		
6	2	0	15	32.5		
7	0	-2	10	25		
8	0	2	10	40		
9	0	0	10	32.5		
10	0	0	10	32.5		
11	0	0	10	32.5		
12	0	0	10	32.5		
13	0	0	10	32.5		

Results and Discussion

Fabrication of grain treater

Fabrication of grain treater is under progress as shown in below given Photographs.

Plate 3.1 Fabrication of Drum for grain treater

Plate 3.3 Fabrication of gate for loading and unloading

Plate 3.4 Fabrication of stand for grain treater

Plate 3.6 Fitting of flights inside the drum

Plate 3.7 Fitting of centre shaft assembly of the drum

Plate 3.8 Fitting of spray nozzles inside the drum

Plate 3.9 Fitting of heater assembly inside the drum

Plate 3.10 Fitting of electric motor and driving mechanism to rotate the drum

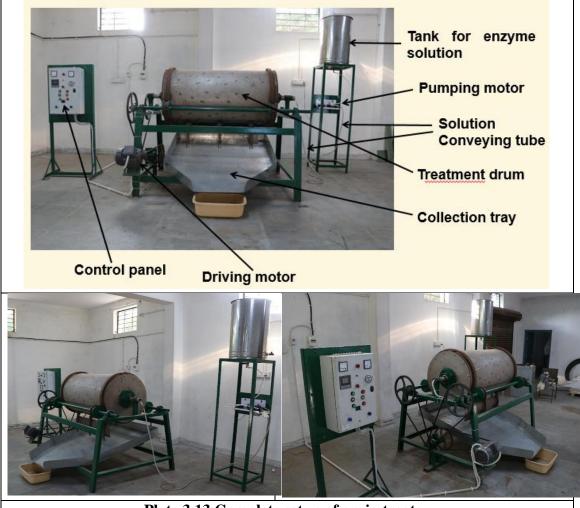


Plate 3.13 Complete setup of grain treater

- Work to be done
- 1. Laboratory experiments for setting up of machine parameters are under progress
- 2. Performance evaluation of machine
- 3. Cost evaluation of machine
- 4. Cost economics of the process
- 5. Report writing

References :

- Anonymous (2017). Enzymatic pre-treatment in the processing of pigeon pea. A project report submitted to Dept. of Agriculture and Cooperation, Govt. of India under National Food Security Mission by Dept. of Food Processing, College of Agril. Engg. & Technology, Junagadh Agril. University, Junagadh (Gujarat).
- Deshpande SD (2003) Optimization of pre milling treatments to enhance recovery of dhal. Annual Report 2001-03. AICRP on Post Harvest Technology, Bhopal Center, Presented in the 24th Annual workshop, held at GBPUA & T, Pantnagar (Feb. 12-14, 2003)

- 3. Deshpande, S. D., Balasubramanya, R. H., Khan, S., Bhatt, D. K. (2007) Influence of pre milling treatments on dhal recovery and cooking characteristics of pigeon pea. Journal of Agricultural Engineering, 44: 53-56.
- 4. Goyal, R. K., Vishwakarma, R. K., Wanjari, O. D. (2008) Optimisation of pigeon pea dehulling process. Biosystems Eng 99: 56-61.
- Patel, N. C, Dabhi, M. N., Chandegara, V. K., Mehta, M. H. (2001) Pulse milling industry technology up gradation: Pilot scale mill approach for R & D and application. Presented in the National seminar on emerging trends in processing, handling, storage and by-product utilization of pulses and soybean, GBPUA&T, Pantnagar (Jan. 18-19, 2001).
- 6. Rout, B., Sahoo, S., Senapati, P. K. (2007) Effect of pre milling treatment on protein and carbohydrate content in tribal pulses. Indian J Traditional Knowledge 6: 69-71.
- Sangani, V. P., Patel, N. C., Davara, P. R., Antala, D. K. and Akbari, P. D. (2014). Optimization of Enzymatic Hydrolysis Parameters of Pigeon Pea for Better Recovery of Dhal. International Journal of Agricultural Science and Technology, 2(4):97-105.
- 8. Saxena RP, Verma P, Sarkar BC, More PK (1993) Enzymatic pre treatment of pigeon pea (*Cajanus cajan* L.) grain and its interaction with milling.Journal of Food Science and Technology, 30: 368-370
- 9. Sreerama, Y. N., Shashikala, V. B., Pratape, V. M. (2009) Effect of enzyme pre-dehulling treatments on dehulling and cooking properties of legumes. Journal of Food Engineering, 92: 389-395.
- Zambre SS (1994) Enzymatic pretreatment of pigeon pea (*Cajanus cajan* L) grain : Its effect on milling, cooking and digestibility. Thesis M.Tech., Agril. Engg., G.B. Pant University of Agricultural and Technology, Pantnagar
- 8. Output During Period Under Report
 - i. Special attainments/innovations
 - j. List of Publications (one copy each to be submitted with RPP-II)
 - i. Research papers Nil
 - ii. Reports/Manuals Nil
 - iii. Working and Concept Papers Nil
 - iv. Popular articles Nil
 - v. Books/Book Chapters Nil
 - vi. Extension Bulletins Nil
 - k. Intellectual Property Generation

(Patents - filed/obtained; Copyrights- filed/obtained; Designsfiled/obtained; Registration details of variety/germplasm/accession if any)

Presentation in Workshop/Seminars/Symposia/Conferences

- (relevant to the project in which scientists have participated)
- m. Details of technology developed (Crop-based; Animal-based, including vaccines; Biological – biofertilizer, biopesticide, etc; IT based – database, software; Any other – please specify)

- n. Trainings/demonstrations organized Nil
- o. Training received Nil
- p. Any other relevant information Project is under progress
- 9. Constraints experienced, if any

- Nil

10. Lessons Learnt

- Nil

- 11. Evaluation
 - Self evaluation of the project for the period under report by the PI with rating in the scale of 1 to 10

8

(a) Evaluation by PI on the contribution of the team in the project including self

S.No.	Name	Status in the project	Rating in the scale of
		(PI/CC-PI/Co-PI)	1 to 10
1	Dr. P. R. Davara	PI	8
2	Dr. M. N. Dabhi	Co-PI	8

12. Signature of PI, CC-PI(s), all Co-PIs

13. Signature (with specific comments on progress/achievements, shortfall and constraints along with rating of the project in the scale of 1 to 10) of Head of Division/Regional Center / Section

14. Comments of IRC

15. Signature (with specific comments on progress/achievements, shortfall and constraints along with rating of the project in the scale of 1 to 10) of JD (R)/ Director

INVESTIGATION – 4

INDIAN COUNCIL OF AGRICULTURAL RESEARCH <u>RESEARCH PROJECT PROFORMA FOR MONITORING ANNUAL</u> <u>PROGRESS</u> (<u>RPP- II)</u>

(Refer for Guidelines ANNEXURE-XI (E))

- 1. Institute Project Code : PH/JU/2020/01
- 2. Project Title : Standardization of process technology for preparation of peanut sauce and peanut wadi (Chunks).
- 3. Reporting Period : 01-02-2020 to 31-01-2021
- 4. Project Duration: Date of Start 01-02-2020 LikelyDate of Completion– 31-03-2022
- 5. Project Team (Name(s) and designation of PI, CC-PI and all project Co-PIs, (with time spent for the project) if any additions/deletions

Sr.	Name, designation and	Status in	Time	Work components to be
No.	institute	the project	to be	assigned to individual scientist
		(PI/CC-PI/	spent	
		Co-PI)	(%)	
1.	Dr. P. R. Davara, Assistant Research Engineer, AICRP on PHET, Dept. of Processing and Food Engg., College of Agril. Engg. & Tech., Junagadh Agril. University, Junagadh	PI	60%	 Review collection/literature survey Designing of the experiment Procurement of raw materials Procurement of microbial cultures and chemicals required to conduct the research trials Quality analysis of the raw materials Preliminary trials for production of peanut sauce and peanut wadi Final trials for development of peanut sauce and peanut wadi using defatted peanut flour/kernels as per the different treatments Physico-chemical and sensory analysis of the products Data collection and its analysis Optimization of process parameters based on the experimental data Report writing

2.	Prof. A. M. Joshi Assistant Microbiologist, AICRP on PHET, Dept. of Processing and Food Engg., College of Agril. Engg. & Tech., Junagadh Agril. University, Junagadh	Co-PI-I	15%	 To assist the PI during fermentation process for peanut sauce To assist the PI to carry out the microbiological analysis of the peanut sauce
3.	Dr. P. J. Rathod Assistant Biochemist, AICRP on PHET, Dept. of Bio-Technology, JAU, Junagadh	Co-PI-II	15%	1. To assist the PI to carry out biochemical analysis of the product
4.	Dr. M. N. Dabhi, Research Engineer, AICRP on PHET, Dept. of Processing and Food Engg., College of Agril. Engg. & Tech., Junagadh Agril. University, Junagadh	Co-PI-III	10%	To assist the PI in taking administrative approvals as and when needed to carry out the different project related activities

21. (a) Activities and outputs earmarked for the year (as per activities schedule given in RPP-I).

Objective wise	Activity	Scientist	% of	%
		responsible	activity	achieve
			envisaged to	d as
			be	targeted
			completed	U
			as per RPP-I	
1. To develop a	1. Review	Dr. P. R. Davara	100%	100%
process technology	collection/literature survey			
for preparation of	2. Designing of the	Dr. P. R. Davara	100%	100%
peanut sauce and	experiment			
peanut wadi.	3. Procurement of raw	Dr. P. R. Davara	100%	10%
	materials	Dr. M. N. Dabhi		
	4. Procurement of	Dr. P. R. Davara	100%	10%
	microbial cultures and	Prof. A. M.		
	chemicals required to	Joshi		
	conduct the research trials	Dr. M. N. Dabhi		
	5. Quality analysis of the	Dr. P. R. Davara	100%	50%
	raw materials			
	6. Preliminary trials for	Dr. P. R. Davara	100%	10%
	production of peanut sauce	Prof. A. M.		
	and peanut wadi	Joshi		
	7. Final trials for	Dr. P. R. Davara	50%	0%
	development of peanut	Prof. A. M.		
	sauce and peanut wadi	Joshi		
	using defatted peanut			
	flour/kernels as per the			
	different treatments			

2. To study the effect of process parameters on different quality and sensory parameters of peanut sauce and	 Physico-chemical and sensory analysis of the developed products Microbilogical analysis of the peanut sauce 	Dr. P. R. Davara Dr. P. J. Rathod Prof. A. M. Joshi	50%	00%
peanut wadi 3. To standardize the process parameters for preparation of peanut sauce and peanut wadi	 Data collection and its analysis Optimization of process parameters based on the experimental data 	Dr. P. R. Davara Dr. M. N. Dabhi	50%	0%

(b) If shortfall/addition, reasons for the same and how to catch up with the intended activities

- 12. Annual Progress Report (research results and achievements in bullets)
 - Defatted peanut flour is purchased from the Nutrinity Foundation, Junagadh to test its feasibility for the preparation of peanut wadi.
 - Quality analysis of defatted peanut flour was done. Values of different biochemical characteristics of defatted peanut flour are presented as under.

Sr. No.	Characteristic	Average values	SD
1.	Moisture content % (w.b.)	5.64	0.09
2.	Carbohydrate (%)	23.59	0.57
3.	Protein (%)	61.98	0.77
4.	Fat (%)	3.96	0.19
5.	Ash (%)	4.76	0.17

• Preliminary trials were conducted for preparation of peanut wadi using the Twin Screw Extruder. But, results were obtained are not upto expectation. Hence, the trials will be repeated in the coming time.

Work to be done

- 1. Procurement of defatted peanut kernels is still awaited from the supplier
- 2. Quality analysis of raw material for peanut sauce preparation
- 3. Procurement of Aspergillus oryzae (Koji mold)
- 4. Procurement of Pediococcus halophilus and Saccharomyces rouxii
- 5. Preliminary trials for production of peanut sauce will be carried out as soon the raw materials and microbial cultures is obtained
- 6. Final trials for development of peanut sauce and peanut wadi using defatted peanut flour/kernels as per the different treatments
- 7. Physico-chemical and sensory analysis of the products
- 8. Data collection and its analysis
- 9. Optimization of process parameters based on the experimental data
- 10. Report writing

- 13. Output During Period Under Report
 - q. Special attainments/innovations
 - r. List of Publications (one copy each to be submitted with RPP-II)
 - i. Research papers Nil
 - ii. Reports/Manuals Nil
 - iii. Working and Concept Papers Nil
 - iv. Popular articles Nil
 - v. Books/Book Chapters Nil
 - vi. Extension Bulletins Nil
 - s. Intellectual Property Generation (Patents - filed/obtained; Copyrights- filed/obtained; Designsfiled/obtained; Registration details of variety/germplasm/accession if any)
 - t. Presentation in Workshop/Seminars/Symposia/Conferences (relevant to the project in which scientists have participated)
 - Details of technology developed (Crop-based; Animal-based, including vaccines; Biological – biofertilizer, biopesticide, etc; IT based – database, software; Any other – please specify)
 - v. Trainings/demonstrations organized Nil
 - w. Training received Nil
 - x. Any other relevant information Project is under progress
- 14. Constraints experienced, if any

- No any supplier is there in India who can provide the *Pediococcus halophilus* bacteria required for the fermentation process in the preparation of peanut sauce. It is expected to be purchased from the ATCC, USA.

15. Lessons Learnt

- Nil

- 16. Evaluation
 - Self evaluation of the project for the period under report by the PI with rating in the scale of 1 to 10

S. No.	Name	Status in the project (PI/CC-PI/Co-PI)	Rating in the scale of 1 to 10
1	Dr. P. R. Davara	PI	8
2	Prof. A. M. Joshi	Co-PI	8
3	Dr. P. J. Rathod	Co-PI	8
4	Dr. M. N. Dabhi	Co-PI	8

(a) Evaluation by PI on the contribution of the team in the project including self

8

- 17. Signature of PI, CC-PI(s), all Co-PIs
- 18. Signature (with specific comments on progress/achievements, shortfall and constraints along with rating of the project in the scale of 1 to 10) of Head of Division/Regional Center / Section

- 19. Comments of IRC
- 20. Signature (with specific comments on progress/achievements, shortfall and constraints along with rating of the project in the scale of 1 to 10) of JD (R)/ Director

INVESTIGATION – 5

INDIAN COUNCIL OF AGRICULTURAL RESEARCH

RESEARCH PROJECT PROFORMA FOR MONITORING ANNUAL PROGRESS (RPP- II)

(Refer for Guidelines ANNEXURE-XI (E))

- 1. Institute Project Code : PH/JU/2020/02
- 2. Project Title: Application of microwave technology for disinfestations of groundnut kernels.
- 3. Reporting Period: May 2020 to December 2020
- 4. Project Duration: Date of Start May 2020

LikelyDate of Completion–December 2021

5. Project Team (Name(s) and designation of PI, CC-PI and all project Co-PIs, (with time spent for the project) if any additions/deletions

Sr.	Name, designation and institute	Status in	Time	Work
No.		the project	spent	components
		(PI/CC-PI/	(%)	assigned to
		Co-PI)		individual
				scientist
1.	R.D.Dhudashia	PI	60%	Planning, data
	Assistant Entomologist,			collection,
	AICRP on PHET,			statistical analysis
	College of Agril. Engg. &			and final report
	Tech., Junagadh Agril.			Writing
	University, Junagadh			
2.	A.M.Joshi,	Co-PI	20%	Helping in
	Assistant Moicrobiologist,			analysis and
	AICRP on PHET,			data collection
	College of Agril. Engg. &			
	Tech., Junagadh Agril.			
	University, Junagadh			
3.	Dr. M. N. Dabhi,	Co-PI	20%	Supervision
	Research Engineer,			and Co-ordination
	AICRP on PHET,			
	Dept. of Processing and Food			
	Engg.,			
	College of Agril. Engg. &			
	Tech., Junagadh Agril.			
	University, Junagadh			

6. (a) Activities and outputs earmarked for the year (as per activities schedule given in RPP-I)

Objective	Activity	Scientist	% of activity	% achieved
wise		responsible	envisaged to be	as targeted
			completed as per	
			RPP-I	
1.	Planning the	R.D.Dhudashia	Planning the	100%
	experiment	M.N.Dabhi	experiment	
2.	Data collection	R.D.Dhudashia	Data collection	60%
		A.M.joshi	was achieved 60%	
3	Statistical analysis and	R.D.Dhudashia	Statistical analysis	100%
	Report writing	M.N.Dabhi	and Report	
			writing is	
			completed	

(b) If shortfall/addition, reasons for the same and how to catch up with the intended activities

7. Annual Progress Report (research results and achievements in bullets)

(Experiment was completed for first year and presented in 36th workshop.)

Back ground information:

Groundnut is an important oilseed crop in India. In India, groundnut occupies 4.77 million hectares area with total production of 4.75 million tonnes in year 2012-13.(anonymous 2015). Groundnut when stored is often attacked by number of pests, viz. groundnut bruchid, rust red flour beetle, rice moth etc. Among this, groundnut bruchid (Caryedon serratus Olivier.) is one of the major and important storage insect species, causing more damage to groundnut (Dick,K.M. 1987a). 20% dry weight loss of kernals due to bruchid infestation in warehouse in Andra Pradesh was reported by Dick K.M.(1987b). Pest infestation reduces the market value and germination of seeds. High Moisture content is also increase the risk of mould growth which indirectly spoils the quality of groundnut. Hence farmers and exporter have a problem for storing of groundnut. Various scientists were tested different methods for minimizing storage losses of groundnut. Among these, Fumigation is the best technique to completely remove the pests from the grains. Many fumigants have been found effective against storage pests, but are hazardous, due to their residual effect in the grains. This adverse effect of chemical fumigants need diversified efforts for evolving more convenient, safer and alternative methods to minimize the losses on groundnut. The use of microwave technology is safe to environment and effective against storage pest. Various scientists were tested microwave technology for disinfestations. However, Very little information is available effect of microwave energy on pest incidence in during storage of groundnut. Thus it is necessary to find out the effective microwave treatment for safe storage of groundnut.

Objectives:

- 1. To evaluate the effect of microwave treatment against storage insect pest of groundnut kernels.
- 2. To study on moisture content and aflatoxin level of groundnut kernels in different microwave treatments.
- 3. To evaluate the effect of microwave treatment on germination of groundnut kernels.

Technical programme:

- (a) Design: CRD
- (b) Replication: 3
- (c) Treatments: 10
 - 1. Microwave treatment @power level 360 W for 30 second expose time
 - 2. Microwave treatment @power level 360 W for 60 second expose time
 - 3. Microwave treatment @power level 360 W for 90 second expose time
 - 4. Microwave treatment @power level 480 W for 30 second expose time
 - 5. Microwave treatment @power level 480 W for 60 second expose time
 - 6. Microwave treatment @power level 480 W for 90 second expose time
 - 7. Microwave treatment @power level 600 W for 30 second expose time
 - 8. Microwave treatment @power level 600 W for 60 second expose time
 - 9. Microwave treatment @power level 600 W for 90 second expose time
 - 10. Control (Untreated)

Observation recorded:

- (A) Entomological Parameters:
 - i. Pest population
 - ii. Percent kernels damage
- (B) Physical parameters
 - i. Germination percentage
 - ii. Moisture content percentage
- (C) Microbial parameters
 - (i) Aflatoxin level

Methodology: A good quality groundnut kernels was procured from seed processers. Initial Observation viz, moisture content, germination percent and insect infestation, damage etc. were recorded at time of storage. 10 kg grains was stored in different bags after treatment of microwave and kept at room temperature in laboratory. Monthly observations were recorded on entomological and physical parameters during storage. The observations were recorded from groundnut samples of 250 g.

Initial observation:

Germination % 80.00, Moisture % 6.61, Insect damage and live insect: Nil Aflatoxin :Nil

Results of project:

(I)Pest population:

(a): Pest population builds up of groundnut bruchid: Nil

The infestation of bruchid was not found in all the treatments during the storage time.

(b)Pest populations build up of Red rust flour beetle:

Table 5.1: Pest population build up of Red rust flour beetle during storage of groundnut kernels.

Treatments	Av.No.of Tribolium Adult/250gram sample				
	After	After 2	After 3	After 4	
	1	month	month	month	
	month				
1. Microwave treatment @power	0	1.46*(1.64)**	2.11(3.96)	2.40(5.27)	
level 360 W for 30 second expose					
time					
2. Microwave treatment @power	0	1.34(1.31)	2.03(3.62)	2.54(5.97)	
level 360 W for 60 second expose					
time					
3. Microwave treatment @power	0	1.56(1.93)	2.20(4.32)	2.48(5.66)	
level 360 W for 90 second expose					
time					
4. Microwave treatment @power	0	1.68(2.31)	2.11(3.96)	2.53(5.92)	
level 480 W for 30 second expose					
time					
5. Microwave treatment @power	0	1.46(1.64)	2.04(3.65)	2.48(5.66)	
level 480 W for 60 second expose					
time					
6. Microwave treatment @power	0	1.46(1.64)	1.95(3.32)	2.40(5.27)	
level 480 W for 90 second expose					
time					
7. Microwave treatment @power	0	1.56(1.93)	2.04(3.65)	2.48(5.63)	
level 600 W for 30 second expose					
time					
8. Microwave treatment @power	0	1.05(0.61)	1.95(3.32)	2.41(5.29)	
level 600 W for 60 second expose					
time					
9. Microwave treatment @power	0	1.17(0.87)	1.86(2.95)	2.34(4.97)	
level 600 W for 90 second expose					
time					
10.Control (Untreated)	0	1.56(1.93)	2.20(4.32)	2.61(6.63)	
S. Em ±	_	0.16	0.11	0.14	
CD at 5%	-	NS	NS	NS	
CV%	-	19.69	9.49	9.58	
* $\sqrt{x+0.5}$ transformation value:	**figure	e in parenthesis a	re retransfor	med value	

* $\sqrt{x+0.5}$ transformation value; **figure in parenthesis are retransformed value

The results showed in Table 5.1 indicated that the Pest population was not recorded in all treatments after one month of storage. The infestation of Red rust flour beetle was found after two month and increase up to four month of storage in all

treatments. The effect of microwave treatment was found non significant after two, three and four month of storage of groundnut kernels.

(ii) Percent grain damage due to red rust flour beetle:

 Table 5.2 : Percent kernels damage on number base due to red rust flour beetle during storage.

Treatments	% kernels damage on number bases				
	After	After 2	After 3	After 4	
	1	month	month	month	
	month				
1. Microwave treatment	0	9.27*(2.59)**	17.08(8.62)	25.08(17.98)	
@power level 360 W for 30					
second expose time					
2. Microwave treatment	0	7.33(1.63)	16.41(7.98)	24.04(16.59)	
@power level 360 W for 60					
second expose time					
3. Microwave treatment	0	7.95(1.91)	16.05(7.64)	25.59(18.66)	
@power level 360 W for 90					
second expose time					
4. Microwave treatment	0	8.74(2.31)	16.77(8.33)	25.57(18.63)	
@power level 480 W for 30					
second expose time					
5. Microwave treatment	0	7.95(1.91)	15.99(7.58)	24.04(16.59)	
@power level 480 W for 60					
second expose time					
6. Microwave treatment	0	8.74(2.31)	16.41(7.98)	25.06(17.95)	
@power level 480 W for 90					
second expose time					
7. Microwave treatment	0	9.36(2.64)	17.12(8.66)	24.83(17.64)	
@power level 600 W for 30					
second expose time					
8. Microwave treatment	0	7.33(1.63)	16.41(7.98)	25.32(18.29)	
@power level 600 W for 60					
second expose time					
9. Microwave treatment	0	7.95(1.91)	16.74(8.29)	25.06(17.95)	
@power level 600 W for 90					
second expose time					
10.Control (Untreated)	0	9.27(2.59)	17.44(8.98)	26.55(19.97)	
S. Em ±	-	0.97	0.74	1.04	
CD at 5%	-	NS	NS	NS	
CV%	-	20.12	7.69	7.20	

*arcsin $\sqrt{\text{percentage transformation value}}$ **figure in parenthesis are retransformed value

The results showed in Table 5.2 indicated that the damage of kernels on number base was not recorded in all treatments after one month of storage. The damage of kernels was found after two month and increase up to four month of storage. The effect of microwave treatment was found non significant after two, three and four month of storage of groundnut kernels.

storage.					
Treatments	% kernels damage on weight bases				
	After	After 2	After 3	After 4	
	1	month	month	month	
	month				
1. Microwave treatment @power	0	8.57*(2.2)**	16.71(8.26)	24.27(16.90)	
level 360 W for 30 second expose					
time					
2. Microwave treatment @power	0	8.27(2.07)	16.27(7.85)	24.43(17.11)	
level 360 W for 60 second expose					
time					
3. Microwave treatment @power	0	8.33(2.10)	15.81(7.42)	24.87(17.69)	
level 360 W for 90 second expose					
time					
4. Microwave treatment @power	0	8.12(2.00)	16.52(8.08)	24.34(16.99)	
level 480 W for 30 second expose					
time					
5. Microwave treatment @power	0	7.62(1.76)	15.96(7.56)	23.07(15.35)	
level 480 W for 60 second expose					
time					
6. Microwave treatment @power	0	8.18(2.03)	16.08(7.67)	23.61(16.04)	
level 480 W for 90 second expose					
time					
7. Microwave treatment @power	0	8.67(2.27)	17.10(8.65)	22.86(15.09)	
level 600 W for 30 second expose					
time					
8. Microwave treatment @power	0	7.79(1.84)	16.08(7.67)	24.12(16.70)	
level 600 W for 60 second expose					
time					
9. Microwave treatment @power	0	7.38(1.65)	16.65(8.21)	23.70(16.15)	
level 600 W for 90 second expose					
time					
10.Control (Untreated)	0	9.12(2.51)	17.07(8.62)	24.95(17.80)	
S. Em ±	-	0.80	0.73	0.49	
CD at 5%	-	NS	NS	NS	
CV%	-	16.87	7.73	3.53	

 Table 5.3: Percent kernels damage on weight base due to red rust flour beetle during storage.

*arcsin \percentage transformation value **figure in parenthesis are retransformed value

The results showed in Table 5.3 indicated that the damage of kernels on weight base was not recorded in all treatments after one month of storage. The damage of kernels was found after two month and increase up to four month of storage. The effect of microwave treatment was found non significant after two, three and four month of storage of groundnut kernels.

(iii) Percent moisture content:

Table 5.4: Percent	moisture cont	tent of grou	ndnut kern	els during storage
	monoral e com	cine or grou		

Treatments	%Moisture content of kernels					
	After	After	After	After	After	
	microwave	1	2	3	4	
	treatment	month	month	month	month	
1. Microwave treatment @power	6.52	6.88	7.67	8.09	7.50	
level 360 W for 30 second expose						
time						
2. Microwave treatment @power	6.41	6.79	7.65	8.08	7.43	
level 360 W for 60 second expose						
time						
3. Microwave treatment @power	6.30	6.78	7.61	8.06	7.42	
level 360 W for 90 second expose						
time						
4. Microwave treatment @power	6.40	6.88	7.63	8.05	7.43	
level 480 W for 30 second expose						
time						
5. Microwave treatment @power	6.32	6.71	7.61	7.97	7.27	
level 480 W for 60 second expose						
time						
6. Microwave treatment @power	6.21	6.62	7.62	8.00	7.39	
level 480 W for 90 second expose						
time						
7. Microwave treatment @power	6.31	6.67	7.65	7.99	7.39	
level 600 W for 30 second expose						
time						
8. Microwave treatment @power	6.19	6.63	7.61	7.93	7.43	
level 600 W for 60 second expose						
time						
9. Microwave treatment @power	6.11	6.57	7.60	7.90	7.31	
level 600 W for 90 second expose						
time						
10.Control (Untreated)	6.61	7.04	7.68	8.09	7.59	
S. Em ±	0.01	0.03	0.03	0.06	0.08	
CD at 5%	0.03	0.08	NS	NS	NS	
CV%	0.30	0.66	0.65	1.30	1.91	

The results showed in Table 5.4 indicated that the effect of microwave treatment on moisture content was found significant after given microwave treatment at storage time. Moisture content was found significant after one month of storage of groundnut kernels. The effect of microwave treatment on moisture content was found non significant after two three and four month of storage, which may be due to high humidity during monsoon season.

(iv) Percent Germination:

Table 5.5: Percent Germination of groundnut kernels during storage

Treatments	Germination % of g	of groundnut Kernel		
	after microwave	after 4th month		
	treatment			
1. Microwave treatment @power level	62.29*(78.38)**	49.81(58.35)		
360 W for 30 second expose time				
2. Microwave treatment @power level	63.55(80.16)	49.99(58.67)		
360 W for 60 second expose time				
3. Microwave treatment @power level	61.14(76.71)	49.80(58.34)		
360 W for 90 second expose time				
4. Microwave treatment @power level	60.07(75.11)	50.19959.00)		
480 W for 30 second expose time				
5. Microwave treatment @power level	63.55(80.16)	50.78(60.02)		
480 W for 60 second expose time				
6. Microwave treatment @power level	62.48(78.65)	50.39(59.34)		
480 W for 90 second expose time				
7. Microwave treatment @power level	62.78(79.08)	50.19(59.00)		
600 W for 30 second expose time				
8. Microwave treatment @power level	61.22(76.82)	50.77(60.01)		
600 W for 60 second expose time				
9. Microwave treatment @power level	60.07(75.11)	50.97(60.34)		
600 W for 90 second expose time				
10.Control (Untreated)	63.55(80.16)	49.61(58.01)		
S. Em ±	2.39	0.87		
CD at 5%	NS	NS		
CV%	6.68	3.01		

arcsin $\sqrt{\text{percentage transformation value}^}$ figure in parenthesis are retransformed value

The results showed in Table 5.5 indicated that the effect of microwave treatment on germination was found non-significant after given microwave treatment at storage time and four month of storage of groundnut kernels. Germination percent was found non-significant it means no adverse effect of microwave treatment on germination. The germination was decreased after four month of storage, which may be due to pest infestation and storage period.

Conclusion: Looking to the above data, the pest population, kernels damage, moisture content and germination, the treatment of microwave was found not effective against insect-pest of groundnut kernels up to four month of storage, which may be due to late storage. Conducting the experiment was late due to lock down, Pest infestation and damage of kernels was recorded very high due to monsoon season during storage, hence results not obtained satisfactory. Experiment will be carried out next year.

- 8. Output during Period under Report
 - y. Special attainments/innovations
 - z. List of Publications (one copy each to be submitted with RPP-II)
 - i. Research papers
 - ii. Reports/Manuals
 - iii. Working and Concept Papers
 - iv. Popular articles
 - v. Books/Book Chapters
 - vi. Extension Bulletins
 - aa. Intellectual Property Generation

(Patents - filed/obtained; Copyrights- filed/obtained; Designs-

filed/obtained; Registration details of variety/germplasm/accession if any)

- bb. Presentation in Workshop/Seminars/Symposia/Conferences (relevant to the project in which scientists have participated)
- cc. Details of technology developed
 - (Crop-based; Animal-based, including vaccines; Biological biofertilizer, biopesticide, etc; IT based – database, software; Any other – please specify)
- dd. Trainings/demonstrations organized
- ee. Training received
- ff. Any other relevant information

9. Constraints experienced, if any: Conducting the experiment was late due to lock down, hence results not obtained satisfactory. Experiment will be carried out next year.

10. Lessons Learnt

11. Evaluation

- (a) Self evaluation of the project for the period under report by the PI with ratin 9 in the scale of 1 to 10
- (b) Evaluation by PI on the contribution of the team in the project including self

S.	Name	Status in the project	Rating in the scale of
No.		(PI/CC-PI/Co-PI)	1 to 10
1	Prof. R.D. Dhudashia	PI	9
2	Prof. A.M. Joshi	Co PI	7
3	Dr. M. N. Dabhi	Co PI	9

12. Signature of PI, CC-PI(s), all Co-PIs

13. Signature (with specific comments on progress/achievements, shortfall and	
constraints along with rating of the project in the scale of 1 to 10) of	
Head of Division/Regional Center / Section	

- 14. Comments of IRC
- 15. Signature (with specific comments on progress/achievements, shortfall and constraints along with rating of the project in the scale of 1 to 10) of JD (R)/ Director

<u>NEW INVESTIGATION – I</u>

INDIAN COUNCIL OF AGRICULTURAL RESEARCH PROFORMA FOR PREPARATION OF STATUS REPORT FOR PROPOSAL OF A NEW RESEARCH PROJECT (Refer for Guidelines ANNEXURE-XI(A))

- 1. Institute Name : Junagadh Agricultural University, Junagadh-362001
- 2. Title of the project : Development of biodegradable cutlery from agro industrial waste.
- 3. Type of research project : Basic/Applied/Extension/Farmer Participatory/Other

(specify)

4. Genesis and rationale of the project :

Cutlery has been one of the most simple but very useful devices that has been created and used in a world over for consuming food. It is believed that spoons are one of the oldest eating equipment that have been utilised by human beings and were made with natural elements like wood, animal bones, seashells. Stainless steel became the preferred metal for most of the cutlery as it was easy to maintain, nonreactive and sturdy. With the introduction of plastics into the market, it brought down the prices of cutlery drastically and at the same time made its availability very easy. A lot of varieties and sizes were introduced for people to choose from, like cups, plates, spoons, forks, knives, etc. Today the cost of the stainless steel cutlery is higher as well such cutleries cannot disposable. The plastic industry is worth 3000-4000 crores in India itself and as per the Central pollution control board in 2016 India produced more than 15000 tons of plastic waste everyday of which around 9000 tons are recycled and the remaining is not collected or remains littered. This increased to around 25000 tons in 2017. The use of this plastics and the problem of disposing them is a way big problem that is being observed in our country today. (Patil et al. 2018)

The post plastic era induces several industries, such as, biomedical, building and packaging industries, to move towards the use of biodegradable items. Biodegradable items prepared from biopolymers and containing reinforcing lignocellulosic particles not only have a big potential to replace petroleum-based films, but also form an essential part of the bioeconomy.

For replacement of plastic cutleries, edible cutleries are now available in a market. Edible cutleries are made out of dried millets (jowar or sorgum), rice and wheat flours. The spoons and chopsticks do not get soggy if placed in water and food. They only soften after some time (10-15 minutes), and can be easily eaten at the end of the meals. Even if discarded, they decompose within 5 to 6 days since they are bio-degradable. (Natarajan N. *et al*, 2019)

5. Knowledge/Technology gaps and justification for taking up the present project including the questions to be answered :

The area and production of mango fruits are 162.77 '000 Ha and 1207.78 '000 MT respectively in Gujarat state (Horticultural statistics at a glance, 2018) and almost 30-40% mango fruits are processed every year (according to Virat Farm Fresh Products, makhiyala, Tal. & Dist. Junagadh). The peel constitutes about 15 to 20 percent of the whole mango fruit. So, tonnes of mango wastes are generated and it has a great problem of disposal and it creates environmental pollution.

An attractive research area is the production of biodegradable cutleries from mango fruit wastes i.e. peels which are mainly discarded after pulp removal. Mango peels are good source of nutrients i.e. Fat – 3.59 %, Minerals - 3.49 %, crude fiber - 10.61 %, carbohydrates – 26.50 %, protein – 3.9 %, Pectin – 12.9 % etc. possess various beneficial effects on human health (Deepa M. *et al*, 2017). The Mango peels, as food wastes are able to compete with commodity plastics that can be used to form biodegradable cutleries. By choosing the right additives, biopolymers can be dissolved, plasticized or kept undissolved in order to perform the required function as cutleries.

The method for production of edible cutleries is already been well known. But, very negligible information is available for utilization of bio-wastes i.e. mango peels for biodegradable cutleries manufacturing. Hence, the experiment is adopted in this study to develop the process technology for the production of biodegradable cutleries and to generate the information about the interaction between process parameters to optimize their levels for production of good quality cutleries.

6. Critical review of present status of the technology at national and international levels along with complete references :

Deepa M Madalageri, Pushpa Bharati & Udaykumar Kage in their research paper "Physicochemical properties, nutritional and antinutritional composition of pulp and peel of three mango varieties" (2017) compare the three different varieties of mango i.e. *Totapuri, Alphonso & Kesar*. According to this paper, total waste generation which are comparatively higher in Totapuri (76.50 g). Then the data regarding fat, crude fiber, total minerals, Calcium, phosphorous, zinc, iron, manganese and copper were significantly higher in peel compared to pulp irrespective of varieties also obtained.

Fransisco Razza, maurizio fieschi, Francesco Degli Innocent (2009) in their research "compostable cutlery and waste management: An LCA approach" says about the use of disposable cutlery in fast food restaurants and canteens in the current management scenario generate mixed heterogeneous waste. This waste is not recyclable and is disposed without any energy recovery. It says that using by biodegradable and compostable plastic cutlery and alternative management scenario is possible. The resulting mixed waste can be recycled through organic recovery.

NM dana Gopal, P Phebe, EVS Kumar in their research paper "Impact Of Plastic Leading Environmental Pollution" (2014) state that The environmental pollution

is defined as the undesirable changes in physical chemical and biological characteristics of our air land and water as a result of overpopulation rapid industrialisation and other human activities like agriculture and deforestation acceptor are loaded with diverse pollutants. Plastic is now regular material which is been used on daily basis in packaging industry, construction industry, disposable cutlery or storage. The increase used in production of plastic in developing emerging countries is a very much for concern as their waste management infrastructure may not be developed. Plastic pollution is defined as the accumulation of the different types of plastic material on land as well as on water bodies. As a community it used on a large scale it consists of a synthetic polymer that consists petrochemicals which degrade in around 500 to 1000 years all we may not know the actual degradation time. During manufacturing many hazardous chemical are emitted which can lead to disease to human and animal as well.

TN Malafi, MA Devine, LL Lesher in their Research paper (1994) "A user evaluation of biodegradable cutlery Journal of environmental polymer" Is a study on the evaluating the acceptance and performance of disposable cutlery made from starch based biodegradable polystyrene cutlery. 243 sailors on board three US Navy vessels at the launch using either biodegradable cutlery made with raisins or polystyrene cutlery the cutlery was rated on sensory and performance dimension as well overall acceptability and the resulted that the Sailor rated both the biodegradable and polyester and utensils are easy to hold.

References :

- (1) Deepa M Madalageri, Pushpa Bharati & Udaykumar Kage (2017). Physicochemical properties, nutritional and antinutritional composition of pulp and peel of three mango varieties. International Journal of Educational Science and Research, 7(3): 81-94.
- (2) Fransisco Razza, maurizio fieschi, Francesco Degli Innocent (2009). Compostable cutlery and waste management: An LCA approach. Science Direct, 29(4): 1424-1433.
- (3) Hemraj Narhar Patil, Preeti Sinhal (2018). Atithya: A Journal of Hospitality. 4(1): 45-51.
- (4) Horticultural statistics at a glance, 2018 : 180.
- (5) Malafi, T.N., Devine, M.A. & Lesher, L.L. (1994). A user evaluation of biodegradable cutlery. Journal of Environ. Polymer Degradation, 2 : 219–223.
- (6) NM dana Gopal, P Phebe, EVS Kumar (2014). Impact Of Plastic Leading Environmental Pollution. Journal of Chemical and Pharmaceutical Sciences. 3 : 96-99.
- (7) Sangeeta sood, Deepshikha (2018), Development and Quality Evaluation of Edible Plate, ARC Journal of Nutrition and Growth. 4(2) : 1-4

7. Expertise available with the investigating group/Institute :

The PI &2 Co-PIs are associated with AICRP on PHET since many years and having enough experience of working in the field of Processing and Food Engineering. While another Co-PI is a mechanical engineer and having an experience of CAD-CAM design and will help to the PI in making of mold / dye. The facility and man power is available in the institute to conduct the process for product formation easily.

8. Brief note on Proprietary/Patent Perspective (for projects related to technology development)/Ethics/Animal Welfare/Bio Safety Issues :

Patent will be obtained as per the rules of patent issuing authority.

9. (a) Expected output

- i. The process technology for the development of biodegradable cutleries will be standardized.
- ii. New product i.e. based on mango wastes will be developed.
- iii. The proposed process technology for the biodegradable cutleries will be suggested to the entrepreneurs.
- iv. Pollution removal through use of mango wastes as well as reduction in use of plastic cutleries.
- v. To create new business opportunities as well as employment generation.

b. Clientele/Stake holders (including economic and socio aspects)

A recommendation will be useful for the mango farmers, entrepreneurs, processors and consumers.

10. Signatures

[Project Leader]

[Co-PIs]

11. Comments and signature

Junagadh is a leading region in Gujarat on the cultivation and production of mango fruits. Many industries are engaged in mango pulp processing. Mango wastes create environmental pollution. Same problem is observed in plastic waste management. Biodegradable cutleries might be made out from mango peels and it might be replace the plastic cutleries. Such kind of project will be helpful for the pollution removal, new technology avail and new employment opportunities. Departmental research activities also get a new direction.

[Head of Division]

ANNEXURE- II INDIAN COUNCIL OF AGRICULTURAL RESEARCH RESEARCH PROJECT PROFORMA FOR INITIATION OF A RESEARCH PROJECT (RPP - I) (Refer for Guidelines ANNEXURE-XI (B)

1. Institute Project Code (to be provided by PME Cell)

Project Title : Development of biodegradable cutlery from agro industrial waste.

2. Key Words : Biodegradable cutleries, mango peels & pollution removal

(a) Name of the Lead Institute : College of Agril. Engg. & Technology,

- Junagadh Agricultural University, Junagadh
- (b) Name of Division/ Regional Center/ Section : AICRP on PHET, Junagadh centre
- 3. (a) Name of the Collaborating Institute(s), if any : -
 - (b) Name of Division/ Regional Center/ Section of Collaborating Institute(s) : -
- **4.** Project Team(Name(s) and designation of PI, CC-PI and all project Co-PIs, with time proposed to be spent)

Sr.	Name, designation and	Status in	Time	Work components to be
No.	institute	the	to be	assigned to individual
		project	spent	scientist
		(PI/CC-	(%)	
		PI/ Co-		
		PI)		
1.	Prof. A. M. Joshi	P.I.	60%	• Review
	Assistant Food			collection/literature survey
	Microbiologist			• Preliminary trial for
	AICRP on PHET,			development of
	College of Agril. Engg. &			biodegradable cutleries.
	Tech., Junagadh Agril.			• Development of
	University, Junagadh			biodegradable cutleries
				using mango peel powder.
				• Laboratory trials as per the
				different process
				parameters.
				• Analysis of biodegradable
				parameters of the products.
				• Data collection and its
				analysis.
				• Report writing.
2.	Dr. P. R. Davara	Co-P.I.	15%	• Work on RSM design.
	Assistant Research Engineer,			• To analyse the physical
	AICRP on PHET,			and rheological
	College of Agril. Engg. &			parameters of
	Tech., Junagadh Agril.			biodegradable parameters.
	University, Junagadh			ere de gradaere parameters.

3.	Prof. N. B. Parmar Asstt. Professor (Mechanical Engineer) Dept. of Farm Machinery & Power, College of Agril. Engg. & Tech., Junagadh Agril. University, Junagadh	Co-P.I.	15%	To assist the PI, in finalizing spoon design with the help of CAD software. And helping to make final mold of spoon.
4.	Dr. M. N. Dabhi Research Engineer, AICRP on PHET, College of Agril. Engg. & Tech., Junagadh Agril. University, Junagadh	Co – P.I.	10%	Overall guidance, supervision and assist the PI in taking administrative approvals as and when needed to carry out the different project related activities.

5. Priority Area to which the project belongs : Post harvest technology

(If not already in the priority area, give justification)

6. Project Duration: Date of Start : March-2021

LikelyDate of Completion: December-2022

- 7. (a) Objectives :
 - i. To develop a process technology for preparation of biodegradable cutlery using mango peel.
 - ii. To study physical, rheological and biodegradable properties of developed product.
 - iii. To estimate the cost economics of developed biodegradable cutlery.
- (b) Practical utility :
 - i. The process technology for the development of biodegradable cutleries will be standardized.
 - ii. New product i.e. based on mango wastes will be developed.
 - iii. The proposed process technology for the biodegradable cutleries will be suggested to the entrepreneurs.
 - iv. Pollution removal through use of mango wastes as well as reduction in use of plastic cutleries.
 - v. To create new business opportunities as well as employment generation.

Objectiv e wise	Activity	Month	n & Year of	Output monitorabl e target(s)	cai ot diff	to be cried it in cerent ears	Scientist(s) responsib le
		Start	Completio		1	2	
			n				

8. Activities and outputs details

1.	Review	Feb –	April-2021	1. To collect	10	_	A.M. Joshi
1.	collection	2021	¹ 1pm ⁻ 2021	the data on	0		2 1.1VI. JUSIII
	concetion	2021		processes of	%		
				biodegradab	70		
				le items.			
				2. To study			
				the work			
				done in the			
				past.			
2.	Prepare	May–	June-2021	Depth,	10	-	1. A.M.
	CAD-CAM	2021		Length,	0		Joshi
	design of			strength etc.	%		
	spoon.			parameters			2. N. B.
	Finalise it			will be			Parmar
	and			evaluated in			
	Make final a			CAD-CAM			
	mold of			design of			
	spoon.			spoon. And			
	1			finally a			
				mold of			
				spoon will			
				be prepared.			
3.	Collect	July-	Aug-2021	- Peels will	10	_	1. A.M.
5.	mango	2021	Aug-2021	be collected.	0		Joshi
	peels. Grind	2021		- Washing,	%		JUSIII
	-			0	70		2. Dr. P.
	precisely.			drying,			2. Dr. P. R.
				grinding of			-
4	Dualinainamy	Sout	Oct-2021	the peels.	10		Davara 1. A.M.
4.	Preliminary	Sept-	Oct-2021	Preliminary trial run for		-	
	laboratory	2021			0		Joshi
	trials.			preparation	%		
				of			2. Dr. P.
				biodegradab			R.
				le cutleries			Davara
				will be			
				carried out.			3. N. B.
							Parmar
5.	Preparation	Nov-	Feb-2022	Final	-	100	1. A.M.
	of	2021		treatment		%	Joshi
	biodegradab			trials will be			
	le cutleries			carried out.			2. Dr. P.
	as per the						R.
	final						Davara
	treatments.						
							3. N. B.
							Parmar
6.	Quality	March	May-2022	Developed	_	100	1. A.M.
0.	analysis of	-2022	1.1uy 2022	biodegradab		%	Joshi
	biodegradab	2022		le cutleries		70	505111
	le cutleries			will be			
	ie cutieries			will be	l		

	prepared by			analysed for			2. Dr. P.
	different			its			R.
	treatments.			engineering			Davara
				as well as			
				biodegradab			
				le aspects.			
7.	Data	June-	Aug-2022	Compilation	-	100	1. A.M.
	analysis and	2022		of collected		%	Joshi
	report			data and			
	writing			preparation			2. Dr. M.
				of report.			N.
							Dabhi

9. Technical Programme (brief) Justification

Cutlery has been one of the most simple but very useful devices that has been created and used in a world over for consuming food. It is believed that spoons are one of the oldest eating equipment that have been utilised by human beings. A lot of varieties and sizes were introduced in plastic cutleries like cups, plates, spoons, forks, knives, etc which have low prices as well easy to dispose. The plastic industry is worth 3000-4000 crores in India itself and as per the Central pollution control board in 2016 India produced more than 15000 tons of plastic waste everyday of which around 9000 tons are recycled and the remaining is not collected or remains littered. This increased to around 25000 tons in 2017. The use of this plastics and the problem of disposing them is a way big problem that is being observed in our country today. (Patil *et al.* 2018)

The post plastic era induces several industries, such as, biomedical, building and packaging industries, to move towards the use of biodegradable items. Biodegradable items prepared from biopolymers and containing reinforcing lignocellulosic particles not only have a big potential to replace petroleum-based films, but also form an essential part of the bioeconomy.

For replacement of plastic cutleries, edible cutleries are now available in a market. Edible cutleries are made out of dried millets (jowar or sorgum), rice and wheat flours. The spoons and chopsticks do not get soggy if placed in water and food. They only soften after some time (10-15 minutes), and can be easily eaten at the end of the meals. Even if discarded, they decompose within 5 to 6 days since they are bio-degradable. (Natarajan N. *et al*, 2019)

Another research aspect also to be opened to make biodegradable cutleries from mango peels. Like a plastic waste management, processed mango wastes management is again a challenge for the processors. Almost 30-40% mango fruits of their production are processed every year (according to virat farm fresh products, makhiyala, Tal. & Dist. Junagadh). The peel constitutes about 15 to 20 percent of the whole mango fruit. So, tonnes of mango wastes are generated and it has a great problem of disposal and it creates environmental pollution. Mango peels are good source of nutrients i.e. Fat -3.59 %, Minerals -3.49 %, crude fiber -10.61 %, carbohydrates -26.50 %, protein -3.9 %, Pectin -12.9 % etc. possess various beneficial effects on human health (Deepa M. *et al*, 2017). The Mango peels, as food wastes are able to compete with commodity plastics that can be used to form biodegradable cutleries. By choosing the right additives, biopolymers can be dissolved, plasticized or kept undissolved in order to perform the required function as cutleries.

The method for production of edible cutleries is already been well known. But, very negligible information is available for utilization bio-wastes i.e. mango peels for biodegradable cutleries manufacturing. Hence, the experiment is adopted in this study to develop the process technology for the production of biodegradable cutleries and to generate the information about the interaction between process parameters to optimize their levels for production of good quality cutleries.

Objectives :

- i. To develop a process technology for preparation of biodegradable cutlery using mango peel.
- ii. To study physical, rheological and biodegradable properties of developed product.
- iii. To estimate the cost economics of developed biodegradable cutlery.

Technical programme :

- a. Design : Optimal design for mixture (Response Surface Methodology)
- b. Replication : 3
- c. Treatments: 17

Run	Mango Peel	Maida flour	Carboxy Methyl cellulose
	powder (%)	(%)	(%)
1	60.00	10.00	30.00
2	60.55	29.45	10.00
3	65.25	18.50	16.25
4	68.24	10.00	21.76
5	60.55	29.45	10.00
6	80.00	10.00	10.00
7	80.00	10.00	10.00
8	52.84	17.16	30.00
9	65.25	18.50	16.25
10	68.24	10.00	21.76
11	57.39	20.00	22.61
12	40.00	30.00	30.00
13	72.74	17.11	10.16
14	49.94	30.00	20.06
15	46.84	24.15	29.01
16	57.39	20.00	22.61
17	100 %	-	-
(Control)			

Methodology :

Mango Peel as raw material

Grinding and making powder using 48 mesh size.

Add Maida flour & Carboxymethyl cellulose

Making dough with 1:1 ratio of powder and water

Heating the cutlery at 80°C for 50 minutes in oven.

Allowed to cool and packed in bag.

Store at dry and cool environment.

Observation to be recorded:

(A) Physical & Rheological Parameters

- (1) Moisture content
- (2) Hardness

- (4) Tensile strength
- (5) Water absorption index
- (3) Compressive strength
- (6) Water solubility index

(B) Biodegradablity parameters

- Soil burial test

(C) Sensory parameters (Visual observation)

- Colour
- Appearance
- Texture
- Overall acceptability

Possible Outputs :

- i. The process technology for the development of biodegradable cutleries will be standardized.
- ii. New product i.e. based on mango wastes will be developed.
- iii. The proposed process technology for the biodegradable cutleries will be suggested to the entrepreneurs.
- iv. Pollution removal through use of mango wastes as well as reduction in use of plastic cutleries.
- v. To create new business opportunities as well as employment generation.

References :

- (1) Deepa M Madalageri, Pushpa Bharati & Udaykumar Kage (2017). Physicochemical properties, nutritional and antinutritional composition of pulp and peel of three mango varieties. International Journal of Educational Science and Research, 7(3): 81-94.
- (2) Fransisco Razza, maurizio fieschi, Francesco Degli Innocent (2009). Compostable cutlery and waste management: An LCA approach. Science Direct, 29(4) : 1424-1433.
- (3) Hemraj Narhar Patil, Preeti Sinhal (2018). Atithya: A Journal of Hospitality. 4(1): 45-51.
- (4) Horticultural statistics at a glance, 2018 : 180.
- (5) Malafi, T.N., Devine, M.A. & Lesher, L.L. (1994). A user evaluation of biodegradable cutlery. Journal of Environ. Polymer Degradation, 2 : 219–223.
- (6) NM dana Gopal, P Phebe, EVS Kumar (2014). Impact Of Plastic Leading Environmental Pollution. Journal of Chemical and Pharmaceutical Sciences. 3 : 96-99.
- (7) Sangeeta sood, Deepshikha (2018), Development and Quality Evaluation of Edible Plate, ARC Journal of Nutrition and Growth. 4(2) : 1-4

11. Financial Implications (` in Lakhs)

(A) Financed by the institute

Sr.	Staff Category	Man months	Cost
No.			
1.	Scientific	24	23,50,000
2.	Technical		
3.	Supporting	12	90,000
4.	SRFs/RAs		
5.	Contractual		
	Total	36	24,40,000

11.1 Manpower (Salaries / Wages)

S. No.	Item	Year(1)	Year (2)	Total
1.	Consumables	15,000	15,000	30,000
2.	Travel	2,000	2,000	4,000
3.	Field Preparation/ Planting/ Harvesting (Man-days/costs)			
4.	Inter-cultivation & Dressing (Man-days/costs)			
5.	Animal/Green house/Computer Systems/Machinery Maintenance			
6.	Miscellaneous(Other costs)	2,000	2,000	4,000
	Total(Recurring)	19,000	19,000	38,000

11.2 Research / Recurring Contingency

Justification : -----

11.3 Non-recurring (Equipment)

S. No.	Item	Year (1)	Year (2)	Year (3)	Total
1.					
2.					
	Total (Non-recurring)				

Justification : -----

11.4 Any Other Special Facility required (including cost) :

S. No.	Item	Year (1)	Year (2)	Total	Remarks
1.					
2.					

11.5 Grand Total (11.1 to 11.4)

Item	Year (1)	Year (2)	Total
Grand Total	12,39,000	12,39,000	24,78,000

(B) Financed by an organization other than the Institute (if applicable) : - Nil - (i)Name of Financing Organization

(ii) Total Budget of the Project

(III) Dudget details	(iii)	Budget details
----------------------	-------	----------------

Sr.	Item	Year(1)	Year(2)	Total	
No.					
1.	Recurring Contingency				
	Travelling Allowance				
	Workshops				
	Contractual Services/ Salaries				
	Operational Cost				
	Consumables				
2.	Non - Recurring Contingency				
	Equipment				
	Furniture				
	Vehicle				
	Others (Miscellaneous)				
3.	HRD Component				
	Training				
	Consultancy				
4.	Works				
	(i) New				
	(ii) Renovation				
5.	Institutional Charges				

12. Expected Output : Process will be standardised for preparation of biodegradable cutleries and will be provided to the society.

13. Expected Benefits and Economic Impact :

- i. The process technology for the development of biodegradable cutleries will be standardized.
- ii. New product i.e. based on mango wastes will be developed.
- iii. The proposed process technology for the biodegradable cutleries will be suggested to the entrepreneurs.
- iv. Pollution removal through use of mango wastes as well as reduction in use of plastic cutleries.
- v. To create new business opportunities as well as employment generation.

14. Risk Analysis :

15. Signature :

Project Leader Co-PI-II Co-PI-III Co-PI-III

16. Signature of HoD

17. Signature of JD (R)/ Director

ANNEXURE - III INDIAN COUNCIL OF AGRICULTURAL RESEARCH CHECKLIST FOR SUBMISSION OF RPP-I (Refer for Guidelines ANNEXURE-XI(C)

1. Project Title : Development of biodegradable cutlery from agro industrial waste.

2. Date of Start & Duration : February – 2021 to December - 2022

- 3. Institute Project $\sqrt{}$ or Externally Funded
- 4. Estimated Cost of the Project : <u>24,78,000/-</u> INR
- 5. Project Presented in the Divisional/Institutional Seminar?

6. Have suggested modifications incorporated?

7. Status Report enclosed

8. Details of work load of investigators in approved ongoing projects:

	Project Leader Co-PI – I			Co-PI – II							
Pro j. Co de.	% Time spent		Date of compl etion	Proj Cod e.	% Time spent	Da te of sta rt	Dat e of com pleti on	Proj. Code.	% Time spent		Date of completio n

Yes / No

Yes / No

9. Work Plan/Activity Chart enclosed	Yes /	No	
10. Included in Institute Plan Activity	Yes /	No	\checkmark
11. Any previous Institute/Adhoc/Foreign aided projects on similar	lines?	Yes / N	o √
12. New equipment required for the project	Yes / No		\checkmark
13. Funds available for new equipment	Yes / No		
14. Signatures			

Project Leader	Co-PI-I	Co-PI-II	Co-PI–III
5			

HOD/PD/I/c

ANNEXURE - IV INDIAN COUNCIL OF AGRICULTURAL RESEARCH APPRAISAL BY THE PMECELL OF RPP-I (Refer for Guidelines ANNEXURE-XI (D)

- 1. Institute Name : AICRP on PHET, JAU, Junagadh
- 2. Project Title : Development of biodegradable cutlery from agro industrial waste.
- 3. On scale 1-10 give score to (a) to (j)

(a)	Relevance of research questions		
(b)	Addressing priority of the institute and/or National priority		
(c)	New innovativeness expected in the study		
(d)	Appropriateness of design/techniques for the questions to be answered		
(e)	Elements of bias addressed in the study		
(f)	Adequacy of scientist(s) time allocation		
(g)) Extent of system review and meta analysis		
(h)	Effective control to experiments		
(i)	Economic evaluation and cost efficiency analysis		
(j)	How appropriately the expected output answers the questions being addressed in the specific subject matter/area (Basic/Applied/Translational/Others)?		
	*Total Score out of 100		

* The score obtained is suggestive of the overall quality ranking of the project

4. Was there any other project carried in the past in the same area/topic?

Yes No

If yes, list the project numbers.

5. Signature of PME Cell Incharge

Tentative Technical Programme for the year 2020-21

Sr.No.	Title			
1.	Investigation No. 1 (Code No:PH/JU/85/1)			
	Establishment of Agro Processing Centre training and demonstration of			
	technologies (Operational research project on Agro Processing Centres)			
2.	Investigation No. 2 (Code No.: PH/JU/2018/02)			
	Design and development of grain treater for enzymatic pre-treatment			
	to pigeon pea grains.			
3.	Investigation No. 3 (Code No. : PH/JU/2020/01)			
	Standardization of process technology for preparation of peanut			
	sauce and peanut wadi (Chunks).			
4.	Investigation No. 4 (Code No. :PH/JU/2020/02)			
	Application of microwave technology for disinfestations of groundnut			
	kernels.			
5.	Development of biodegradable cutlery from agro industrial waste.			

Publications, Training and Demonstrations

Α	Publications				
A1	Books :				
S N	Title	Author Name of Publisher		r	
1.	Pigeon pea milling	V. P. Sangani, Vaishali C. Chotaliya P. R. Davara		Scholar's Press, International Book Market Service Ltd. ISBN No. 978- 613-8-93437-02020	
2.	Effect of ozone and plastic material against the microbes of tomatoes	A. M. Joshi; BrijeshKhanpara; DharaVagh		Lambert Academic publish	ing; 2019
A2	Research paper	in referred Journ	als		
SN	Title of Paper	Author		Name of Journal	NAAS Rating
1.	Effect of enzyme pretreatment on dehulling, cooking time and protein content of pigeon pea (variety BDN2).	V. P. Sangani, P. J. Rathod,	Journal of Food Science and Technology, 56(10):4552-4564 ISSN 0022-1155 CFTRI Mysore		7.85
2.	Response surface modeling of process parameters for banana juice clarification.	M. J. Nayaka,, E. R. Paghadal,, U. V. Patel, P. R. Davara,	Green Farming, 10(2):160-166 ISSN 0974-0775		4.79
3.	Physico- chemical analysis of honey based herbal gooseberry candies. 2020.	S. P., Cholera, M. B Kapopara. P. J. Rathod, S. D. Jadav, D. L. Pranami,	International Journal of Chemical Studies, 8(2):2501- 2509 P-ISSN Number :2349-8528 (2020) DOI :https://doi.org/10.22271/chemi. 2020 x8 i2a1 9126		5.31
4.	Effect of Evaporative Water Cooled Grinding on Milling Quality of Wheat	V. P. Sangani, P. P. Vora, N. C. Thumar,	9(06):1183-1190. doi:https://doi.org/10.20546/ijc mas.2020.906.147 2020		5.38
5.	Optimization of foaming and stabilizing	B. D. Chougale, V. P. Sangani,		national Journal of nical Studies, 8(5):2458-	5.31

(1) RESEARCH / POPULAR ARTICLES PUBLISHED BY THE TEACHERS OF THE DEPARTMENT DURING YEAR, (2019-20)

6.	process parameters foam mat dryi of prickly po (Opuntiaelation Mill.) pulp Influence Gamma Irradiation	ear	DOI: chemi. 2 10685.2020 International Journa Microbiology and A Sciences,9(8):589-6	pplied	5.38
	of Pea Kernels.		ISSN:2319-7706 (20	020)	
A3	Chapter in B				
Sr. No.	Title	Author	Name of	f Publisher	
1.	The effect of peanut (Arachishypo) aea L.) flour on the quality and sensory analysis of cookies.	B. Kapopara,	Chapter in book M agriculture, forestry food science, Edite Rao. Mahima Rese Social Welfare, Var ISBN:978-81-94337	y, biotechnol ed by Ratnes earch Founda anasi, UP, Inc	ogy and h Kumar tion and
A4	Articles in ve	ernacular language m	agazine		
1.	Ragima Mulyavardh anni Tako	B M Devani B L Jani Dr. S H Akbari Dr. M N Dabhi Sh. D M Vyas	Krushi Jagran	April-2019	
2.	Tametana Paakma Mulyavardh anni Tako	B M Devani B L Jani Dr. S H Akbari Dr. M N Dabhi	Krushi Jagran	May-2019	
3.	Khadhya Padarthona Prasanskara nni Aadhunik Takniko	B M Devani B L Jani Dr. S H Akbari Dr. M N Dabhi	Krushi Jivan	February-2	020
4.	Nutraceutic als: Nutritionall y Functional Foods	B M Devani B L Jani Dr. M N Dabhi	Food Marketing & Technology	March-202	0
5.	Hathala Thorna Jindavani Agatyata ane Pulp	Dr. P R Davara Viraj Naliyapara	Krushi Jivan	2019	

	Melavvani Rit			
6.	Hathala Thorna Jindavanu Processing ane Mulyavardh an	Viraj Naliyapara Dr. P R Davara	Krushi Jivan	2020

Organized technology and demonstration mela at CAET on 19-02-2020

	Apricultural Technologi and Bachnerg Datametration (eds. 1) 19 Estemutary, 2000 19 Organized by: Animalia Oscindinational PETY College of Agricultural Engineering and Lechnologi Unanged Agricultural Engineering and Lechnologi College of Agricultural Engineering and Lechnologi Unanged Agricultural Engineering and Lechnologi College of Agricultural Engineering and Lechnologi College of Agricultural Engineering and Lechnologi Armilla Professible Frame Addated Agricultural Engineering and Lechnologi College of Agricultural E	
		<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>
	Organized training under SCSP	
	1 Agricultural product processing and va	
	agriculture at Tukda, Ta. Porbandar or Prof. A.M. Joshi, Performed a duty as aAg at Jasdan (Tal. Rajkot)	
Α	Demonstrations organized	
2	• Demonstrated processing machinery in CAET on 19-02-2020	technology and demonstration mela at

